Skip to main content

Antimicrobial Resistance and Drug Efflux Pumps in Vibrio and Legionella

  • Chapter
  • First Online:

Abstract

The two genera, Vibrio and Legionella, are associated with aquatic environments and cause severe illnesses such as cholera and legionellosis, respectively. The representative species, Vibrio cholerae, Vibrio parahaemolyticus, and Legionella pneumophila, are generally susceptible to a range of antimicrobial agents, but their resistance to antimicrobials can be readily selected after exposure to antimicrobial agents. The genomes of these species contain a large number of genes encoding proven and putative drug efflux transporters (including the prototypical NorM drug exporter identified in Vibrio spp.), some of which have been demonstrated to play an important role in intrinsic resistance to structurally unrelated antimicrobials as well as to involve in other functions such as virulence. However, the expressional regulation of these drug efflux pumps and their contribution to acquired antimicrobial resistance remain a key area for future research. This chapter provides an overview of antimicrobial resistance in Vibrio and Legionella with a focus on current understanding of drug efflux pumps in resistance and other functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lacey SW (1995) Cholera: calamitous past, ominous future. Clin Infect Dis 20:1409–1419. doi:10.1093/clinids/20.5.1409

    Article  CAS  PubMed  Google Scholar 

  2. Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nguyen TM, Ilef D, Jarraud S, Rouil L, Campese C, Che D, Haeghebaert S, Ganiayre F et al (2006) A community-wide outbreak of legionnaires disease linked to industrial cooling towers: how far can contaminated aerosols spread? J Infect Dis 193:102–111. doi:10.1086/498575

    Article  PubMed  Google Scholar 

  4. Tarr CL, Bopp C (2015) Vibrio and related organisms. In: Jorgensen JH, Pfaller MA (eds) Manual of clinical microbiology, vol 1. ASM Press, Washington, DC, pp 762–772

    Google Scholar 

  5. Shinoda S, Miyoshi S (2011) Proteases produced by vibrios. Biocontrol Sci 16:1–11. doi:10.4265/bio.16.1

    Article  CAS  PubMed  Google Scholar 

  6. Sanford JP (1979) Legionnaires’ disease: one person’s perspective. Ann Intern Med 90:699–703. doi:10.7326/0003-4819-90-4-699

    Article  CAS  PubMed  Google Scholar 

  7. Cunha BA, Burillo A, Bouza E (2015) Legionnaires’ disease. Lancet. doi:10.1016/S0140-6736(15)60078-2

    PubMed  Google Scholar 

  8. Chien M, Morozova I, Shi S, Sheng H, Chen J, Gomez SM, Asamani G, Hill K et al (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968. doi:10.1126/science.1099776

    Article  CAS  PubMed  Google Scholar 

  9. Cazalet C, Rusniok C, Bruggemann H, Zidane N, Magnier A, Ma L, Tichit M, Jarraud S et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173. doi:10.1038/ng1447

    Article  CAS  PubMed  Google Scholar 

  10. Song JH, Oh WS, Kang CI, Chung DR, Peck KR, Ko KS, Yeom JS, Kim CK et al (2008) Epidemiology and clinical outcomes of community-acquired pneumonia in adult patients in Asian countries: a prospective study by the Asian network for surveillance of resistant pathogens. Int J Antimicrob Agents 31:107–114. doi:10.1016/j.ijantimicag.2007.09.014

    Article  CAS  PubMed  Google Scholar 

  11. Almahmoud I, Kay E, Schneider D, Maurin M (2009) Mutational paths towards increased fluoroquinolone resistance in Legionella pneumophila. J Antimicrob Chemother 64:284–293. doi:10.1093/jac/dkp173

    Article  CAS  PubMed  Google Scholar 

  12. Shadoud L, Almahmoud I, Jarraud S, Etienne J, Larrat S, Schwebel C, Timsit JF, Schneider D et al (2015) Hidden selection of bacterial resistance to fluoroquinolones in vivo: the case of Legionella pneumophila and humans. EBioMedicine 2:1179–1185. doi:10.1016/j.ebiom.2015.07.018

    Google Scholar 

  13. Baker S (2015) A return to the pre-antimicrobial era? Science 347:1064–1066. doi:10.1126/science.aaa2868

    Article  CAS  PubMed  Google Scholar 

  14. Mhalu FS, Mmari PW, Ijumba J (1979) Rapid emergence of El Tor Vibrio cholerae resistant to antimicrobial agents during first six months of fourth cholera epidemic in Tanzania. Lancet 1:345–347. doi:10.1016/S0140-6736(79)92889-7

    Article  CAS  PubMed  Google Scholar 

  15. Davey RB, Pittard J (1975) Potential for in vivo acquisition of R plasmids by one strain of Vibrio cholerae biotype El tor. Antimicrob Agents Chemother 8:111–116. doi:10.1128/AAC.8.2.111

    Google Scholar 

  16. Glass RI, Huq MI, Lee JV, Threlfall EJ, Khan MR, Alim AR, Rowe B, Gross RJ (1983) Plasmid-borne multiple drug resistance in Vibrio cholerae serogroup O1, biotype El Tor: evidence for a point-source outbreak in Bangladesh. J Infect Dis 147:204–209. doi:10.1093/infdis/147.2.204

    Article  CAS  PubMed  Google Scholar 

  17. Weber JT, Mintz ED, Canizares R, Semiglia A, Gomez I, Sempertegui R, Davila A, Greene KD et al (1994) Epidemic cholera in Ecuador: multidrug-resistance and transmission by water and seafood. Epidemiol Infect 112:1–11. doi:10.1017/S095026880005737X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marin MA, Fonseca EL, Andrade BN, Cabral AC, Vicente AC (2014) Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1. PLoS One 9:e108728. doi:10.1371/journal.pone.0108728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spagnoletti M, Ceccarelli D, Rieux A, Fondi M, Taviani E, Fani R, Colombo MM, Colwell RR et al (2014) Acquisition and evolution of SXT-R391 integrative conjugative elements in the seventh-pandemic Vibrio cholerae lineage. mBio 5:e01356-14. doi:10.1128/mBio.01356-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rajpara N, Patel A, Tiwari N, Bahuguna J, Antony A, Choudhury I, Ghosh A, Jain R et al (2009) Mechanism of drug resistance in a clinical isolate of Vibrio fluvialis: involvement of multiple plasmids and integrons. Int J Antimicrob Agents 34:220–225. doi:10.1016/j.ijantimicag.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  21. Folster JP, Katz L, McCullough A, Parsons MB, Knipe K, Sammons SA, Boncy J, Tarr CL et al (2014) Multidrug-resistant IncA/C plasmid in Vibrio cholerae from Haiti. Emerg Infect Dis 20:1951–1953. doi:10.3201/eid2011.140889

    Article  PubMed  PubMed Central  Google Scholar 

  22. Okuda J, Hayakawa E, Nishibuchi M, Nishino T (1999) Sequence analysis of the gyrA and parC homologues of a wild-type strain of Vibrio parahaemolyticus and its fluoroquinolone-resistant mutants. Antimicrob Agents Chemother 43:1156–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Srinivasan VB, Virk RK, Kaundal A, Chakraborty R, Datta B, Ramamurthy T, Mukhopadhyay AK, Ghosh A (2006) Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 50:2428–2432. doi:10.1128/AAC.01561-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mathur J, Waldor MK (2004) The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun 72:3577–3583. doi:10.1128/IAI.72.6.3577-3583.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–608. doi:10.1126/science.280.5363.605

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X (2016) Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc Natl Acad Sci U S A 113:1648–1653. doi:10.1073/pnas.1520300113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wendling CC, Wegner KM (2015) Adaptation to enemy shifts: rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters. Proc Biol Sci 282:20142244. doi:10.1098/rspb.2014.2244

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eliopoulos GM, Reiszner E, Ferraro MJ, Moellering RC (1987) Comparative in vitro activity of A-56268 (TE-031), a new macrolide antibiotic. J Antimicrob Chemother 20:671–675. doi:10.1093/jac/20.5.671

    Google Scholar 

  29. Eliopoulos GM, Wennersten C, Reiszner E, Moellering RC Jr (1987) Comparative in vitroactivity of CGP 31608, a new penem antibiotic. Antimicrob Agents Chemother 31:1188–1193. doi:10.1128/AAC.31.8.1188

    Google Scholar 

  30. Nielsen K, Bangsborg JM, Hoiby N (2000) Susceptibility of Legionella species to five antibiotics and development of resistance by exposure to erythromycin, ciprofloxacin, and rifampicin. Diagn Microbiol Infect Dis 36:43–48. doi:10.1016/S0732-8893(99)00095-4

    Article  CAS  PubMed  Google Scholar 

  31. Blasco MD, Esteve C, Alcaide E (2008) Multiresistant waterborne pathogens isolated from water reservoirs and cooling systems. J Appl Microbiol 105:469–475. doi:10.1111/j.1365-2672.2008.03765.x

    Article  CAS  PubMed  Google Scholar 

  32. Hammerschlag MR, Sharma R (2008) Use of cethromycin, a new ketolide, for treatment of community-acquired respiratory infections. Expert Opin Investig Drugs 17:387–400. doi:10.1517/13543784.17.3.387

    Article  CAS  PubMed  Google Scholar 

  33. Varner TR, Bookstaver PB, Rudisill CN, Albrecht H (2011) Role of rifampin-based combination therapy for severe community-acquired Legionella pneumophila pneumonia. Ann Pharmacother 45:967–976. doi:10.1345/aph.1Q074

    Article  CAS  PubMed  Google Scholar 

  34. Ruckdeschel G, Ehret W, Ahl A (1984) Susceptibility of Legionella spp. to imipenem and 27 other β-lactam antibiotics. Eur J Clin Microbiol 3:463–467. doi:10.1007/BF02017376

    Article  CAS  PubMed  Google Scholar 

  35. Mallegol J, Fernandes P, Melano RG, Guyard C (2014) Antimicrobial activity of solithromycin against clinical isolates of Legionella pneumophila serogroup 1. Antimicrob Agents Chemother 58:909–915. doi:10.1128/AAC.01639-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, Levy SB (2014) Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Antimicrob Agents Chemother 58:1279–1283. doi:10.1128/AAC.01066-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moffie BG, Mouton RP (1988) Sensitivity and resistance of Legionella pneumophila to some antibiotics and combinations of antibiotics. J Antimicrob Chemother 22:457–462. doi:10.1093/jac/22.4.457

    Article  CAS  PubMed  Google Scholar 

  38. Fong DH, Lemke CT, Hwang J, Xiong B, Berghuis AM (2010) Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila. J Biol Chem 285:9545–9555. doi:10.1074/jbc.M109.038364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Poole K (2012) Efflux-mediated antimicrobial resistance. In: Pucci MJ, Dougherty TJ (eds) Antibiotic discovery and development. Springer, US, pp 349–395. doi:10.1007/978-1-4614-1400-1_10

    Chapter  Google Scholar 

  40. Li X-Z, Plésiat P, Nikaido H (2015) The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. doi:10.1128/CMR.00117-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203. doi:10.1016/j.femsle.2005.02.034

    Article  CAS  PubMed  Google Scholar 

  42. Hassan KA, Elbourne LD, Li L, Gamage HK, Liu Q, Jackson SM, Sharples D, Kolsto AB et al (2015) An ace up their sleeve: a transcriptomic approach exposes the AceI efflux protein of Acinetobacter baumannii and reveals the drug efflux potential hidden in many microbial pathogens. Front Microbiol 6:333. doi:10.3389/fmicb.2015.00333

    Article  PubMed  PubMed Central  Google Scholar 

  43. Merrell DS, Camilli A (1999) The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol 34:836–849. doi:10.1046/j.1365-2958.1999.01650.x

    Article  CAS  PubMed  Google Scholar 

  44. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483. doi:10.1038/35020000

    Article  CAS  PubMed  Google Scholar 

  45. Taylor DL, Bina XR, Bina JE (2012) Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus. PLoS One 7:e38208. doi:10.1371/journal.pone.0038208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taylor DL, Ante VM, Bina XR, Howard MF, Bina JE (2015) Substrate-dependent activation of the Vibrio cholerae vexAB RND efflux system requires vexR. PLoS One 10:e0117890. doi:10.1371/journal.pone.0117890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bina XR, Provenzano D, Nguyen N, Bina JE (2008) Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605. doi:10.1128/IAI.01620-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yamamoto T, Nair GB, Albert MJ, Parodi CC, Takeda Y (1995) Survey of in vitro susceptibilities of Vibrio cholerae O1 and O139 to antimicrobial agents. Antimicrob Agents Chemother 39:241–244

    Google Scholar 

  49. Sciortino CV, Johnson JA, Hamad A (1996) Vitek system antimicrobial susceptibility testing of O1, O139, and non-O1 Vibrio cholerae. J Clin Microbiol 34:897–900

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Paul S, Chaudhuri K, Chatterjee AN, Das J (1992) Presence of exposed phospholipids in the outer membrane of Vibrio cholerae. J Gen Microbiol 138:755–761. doi:10.1099/00221287-138-4-755

    Article  CAS  PubMed  Google Scholar 

  51. Benz R, Maier E, Chakraborty T (1997) Purification of OmpU from Vibrio cholerae classical strain 569B: evidence for the formation of large cation-selective ion-permeable channels by OmpU. Microbiologia 13:321–330

    CAS  PubMed  Google Scholar 

  52. Ren Q, Kang KH, Paulsen IT (2004) TransportDB: a relational database of cellular membrane transport systems. Nucleic Acids Res 32:D284–D288. doi:10.1093/nar/gkh016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ren Q, Chen K, Paulsen IT (2007) TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:D274–D279. doi:10.1093/nar/gkl925

    Article  CAS  PubMed  Google Scholar 

  54. Cerda-Maira FA, Ringelberg CS, Taylor RK (2008) The bile response repressor BreR regulates expression of the Vibrio cholerae breAB efflux system operon. J Bacteriol 190:7441–7452. doi:10.1128/jb.00584-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bina JE, Provenzano D, Wang C, Bina XR, Mekalanos JJ (2006) Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181. doi:10.1007/s00203-006-0133-5

    Article  CAS  PubMed  Google Scholar 

  56. Bina JE, Mekalanos JJ (2001) Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69:4681–4685. doi:10.1128/IAI.69.7.4681-4685.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsuo T, Nakamura K, Kodama T, Mikami T, Hiyoshi H, Tsuchiya T, Ogawa W, Kuroda T (2013) Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus. Microbiol Open 2:725–742. doi:10.1002/mbo3.100

    CAS  Google Scholar 

  58. Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2003) A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother 52:572–575. doi:10.1093/jac/dkg390

    Article  CAS  PubMed  Google Scholar 

  59. Sekiya H, Mima T, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2003) Functional cloning and characterization of a multidrug efflux pump, mexHI-opmD, from a Pseudomonas aeruginosa mutant. Antimicrob Agents Chemother 47:2990–2992. doi:10.1128/AAC.47.9.2990-2992.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rahman MM, Matsuo T, Ogawa W, Koterasawa M, Kuroda T, Tsuchiya T (2007) Molecular cloning and characterization of all RND-type efflux transporters in Vibrio cholerae non-O1. Microbiol Immunol 51:1061–1070. doi:10.1111/j.1348-0421.2007.tb04001.x

    Article  CAS  PubMed  Google Scholar 

  61. Price NL, Raivio TL (2009) Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 191:1798–1815. doi:10.1128/JB.00798-08

    Article  CAS  PubMed  Google Scholar 

  62. Slamti L, Waldor MK (2009) Genetic analysis of activation of the Vibrio cholerae Cpx pathway. J Bacteriol 191:5044–5056. doi:10.1128/JB.00406-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Taylor DL, Bina XR, Slamti L, Waldor MK, Bina JE (2014) Reciprocal regulation of RND efflux systems and the Cpx two-component system in Vibrio cholerae. Infect Immun 82:2980–2991. doi:10.1128/IAI.00025-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Acosta N, Pukatzki S, Raivio TL (2015) The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron. J Bacteriol 197:262–276. doi:10.1128/jb.01957-14

    Article  CAS  PubMed  Google Scholar 

  65. Begum A, Rahman MM, Ogawa W, Mizushima T, Kuroda T, Tsuchiya T (2005) Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 49:949–957. doi:10.1111/j.1348-0421.2005.tb03696.x

    Article  CAS  PubMed  Google Scholar 

  66. Colmer JA, Fralick JA, Hamood AN (1998) Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae. Mol Microbiol 27:63–72. doi:10.1046/j.1365-2958.1998.00657.x

    Article  CAS  PubMed  Google Scholar 

  67. Woolley RC, Vediyappan G, Anderson M, Lackey M, Ramasubramanian B, Jiangping B, Borisova T, Colmer JA et al (2005) Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli. J Bacteriol 187:5500–5503. doi:10.1128/JB.187.15.5500-5503.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singh AK, Haldar R, Mandal D, Kundu M (2006) Analysis of the topology of Vibrio cholerae NorM and identification of amino acid residues involved in norfloxacin resistance. Antimicrob Agents Chemother 50:3717–3723. doi:10.1128/aac.00460-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Furukawa H, Tsay JT, Jackowski S, Takamura Y, Rock CO (1993) Thiolactomycin resistance in Escherichia coli is associated with the multidrug resistance efflux pump encoded by emrAB. J Bacteriol 175:3723–3729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lomovskaya O, Lewis K, Matin A (1995) EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol 177:2328–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cuthbertson L, Nodwell JR (2013) The TetR family of regulators. Microbiol Mol Biol Rev 77:440–475. doi:10.1128/MMBR.00018-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen S, Wang H, Katzianer DS, Zhong Z, Zhu J (2013) LysR family activator-regulated major facilitator superfamily transporters are involved in Vibrio cholerae antimicrobial compound resistance and intestinal colonisation. Int J Antimicrob Agents 41:188–192. doi:10.1016/j.ijantimicag.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  73. Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Huda MN, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2001) Na+-driven multidrug efflux pump VcmA from Vibrio cholerae non-O1, a non-halophilic bacterium. FEMS Microbiol Lett 203:235–239. doi:10.1111/j.1574-6968.2001.tb10847.x

    Article  CAS  PubMed  Google Scholar 

  75. Huda MN, Chen J, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2003) Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol Immunol 47:419–427. doi:10.1111/j.1348-0421.2003.tb03379.x

    Article  CAS  PubMed  Google Scholar 

  76. Huda N, Lee EW, Chen J, Morita Y, Kuroda T, Mizushima T, Tsuchiya T (2003) Molecular cloning and characterization of an ABC multidrug efflux pump, VcaM, in non-O1 Vibrio cholerae. Antimicrob Agents Chemother 47:2413–2417. doi:10.1128/AAC.47.8.2413-2417.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith KP, Kumar S, Varela MF (2009) Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol 191:903–911. doi:10.1007/s00203-009-0521-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mohanty P, Patel A, Kushwaha Bhardwaj A (2012) Role of H- and D- MATE-type transporters from multidrug resistant clinical isolates of Vibrio fluvialis in conferring fluoroquinolone resistance. PLoS One 7:e35752. doi:10.1371/journal.pone.0035752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matsuo T, Hayashi K, Morita Y, Koterasawa M, Ogawa W, Mizushima T, Tsuchiya T, Kuroda T (2007) VmeAB, an RND-type multidrug efflux transporter in Vibrio parahaemolyticus. Microbiology 153:4129–4137. doi:10.1099/mic.0.2007/009597-0

    Article  CAS  PubMed  Google Scholar 

  80. Matsuo T, Ogawa W, Tsuchiya T, Kuroda T (2014) Overexpression of vmeTUV encoding a multidrug efflux transporter of Vibrio parahaemolyticus causes bile acid resistance. Gene 541:19–25. doi:10.1016/j.gene.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  81. Chen J, Morita Y, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2002) VmrA, a member of a novel class of Na+-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184:572–576. doi:10.1128/JB.184.2.572-576.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hassan KA, Liu Q, Henderson PJ, Paulsen IT (2015) Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. mBio 6:e01982–14. doi:10.1128/mBio.01982-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee S, Yeom JH, Seo S, Lee M, Kim S, Bae J, Lee K, Hwang J (2015) Functional analysis of Vibrio vulnificus RND efflux pumps homologous to Vibrio cholerae VexAB and VexCD, and to Escherichia coli AcrAB. J Microbiol 53:256–261. doi:10.1007/s12275-015-5037-0

    Article  CAS  PubMed  Google Scholar 

  84. Lee S, Song S, Lee K (2014) Functional analysis of TolC homologs in Vibrio vulnificus. Curr Microbiol 68:729–734. doi:10.1007/s00284-014-0537-4

    Article  CAS  PubMed  Google Scholar 

  85. Ferhat M (2010) Rôle des pompes à efflux de Legionella pneumophila dans la résistance aux biocides et à l’hôte. Doctorat, Université Claude Bernard – Lyon I, Villeurbanne

    Google Scholar 

  86. Allard KA, Viswanathan VK, Cianciotto NP (2006) lbtA and lbtB are required for production of the Legionella pneumophila siderophore legiobactin. J Bacteriol 188:1351–1363. doi:10.1128/JB.188.4.1351-1363.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jin Y, Nair A, van Veen HW (2014) Multidrug transport protein NorM from Vibrio cholerae simultaneously couples to sodium- and proton-motive force. J Biol Chem 289:14624–14632. doi:10.1074/jbc.M113.546770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Letchumanan V, Chan KG, Lee LH (2014) Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol 5:705. doi:10.3389/fmicb.2014.00705

    Article  PubMed  PubMed Central  Google Scholar 

  89. Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M et al (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361:743–749. doi:10.1016/S0140-6736(03)12659-1

    Article  CAS  PubMed  Google Scholar 

  90. Yang W, Ding D, Zhang C, Zhou J, Su X (2015) iTRAQ-based proteomic profiling of Vibrio parahaemolyticus under various culture conditions. Proteome Sci 13:19. doi:10.1186/s12953-015-0075-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morita Y, Kataoka A, Shiota S, Mizushima T, Tsuchiya T (2000) NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182:6694–6697. doi:10.1128/JB.182.23.6694-6697.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Otsuka M, Yasuda M, Morita Y, Otsuka C, Tsuchiya T, Omote H, Moriyama Y (2005) Identification of essential amino acid residues of the NorM Na+/multidrug antiporter in Vibrio parahaemolyticus. J Bacteriol 187:1552–1558. doi:10.1128/JB.187.5.1552-1558.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593. doi:10.1016/j.tips.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  94. van Veen HW (2010) Last of the multidrug transporters. Nature 467:926–927. doi:10.1038/467926a

    Article  CAS  PubMed  Google Scholar 

  95. Hassan KA, Jackson SM, Penesyan A, Patching SG, Tetu SG, Eijkelkamp BA, Brown MH, Henderson PJ et al (2013) Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci U S A 110:20254–20259. doi:10.1073/pnas.1317052110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ et al (2003) Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13:2577–2587. doi:10.1101/gr.1295503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee M, Kim HL, Song S, Joo M, Lee S, Kim D, Hahn Y, Ha NC et al (2013) The α-barrel tip region of Escherichia coli TolC homologs of Vibrio vulnificus interacts with the MacA protein to form the functional macrolide-specific efflux pump MacAB-TolC. J Microbiol 51:154–159. doi:10.1007/s12275-013-2699-3

    Article  CAS  PubMed  Google Scholar 

  98. Kawano H, Miyamoto K, Yasunobe M, Murata M, Myojin T, Tsuchiya T, Tanabe T, Funahashi T et al (2014) The RND protein is involved in the vulnibactin export system in Vibrio vulnificus M2799. Microb Pathog 75:59–67. doi:10.1016/j.micpath.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  99. Vanhove AS, Rubio TP, Nguyen AN, Lemire A, Roche D, Nicod J, Vergnes A, Poirier AC, et al (2016) Copper homeostasis at the host vibrio interface: lessons from intracellular Vibrio transcriptomics. Environ Microbiol 18:875-88. doi:10.1111/1462-2920.13083

    Google Scholar 

  100. Ferhat M, Atlan D, Vianney A, Lazzaroni JC, Doublet P, Gilbert C (2009) The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 4:e7732. doi:10.1371/journal.pone.0007732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nikaido H (1998) The role of outer membrane and efflux pumps in the resistance of Gram-negative bacteria. Can we improve drug access? Drug Resist Updat 1:93–98. doi:10.1016/S1368-7646(98)80023-X

    Article  CAS  PubMed  Google Scholar 

  102. Gabay JE, Blake M, Niles WD, Horwitz MA (1985) Purification of Legionella pneumophila major outer membrane protein and demonstration that it is a porin. J Bacteriol 162:85–91

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kitsukawa K, Hara J, Saito A (1991) Inhibition of Legionella pneumophila in guinea pig peritoneal macrophages by new quinolone, macrolide and other antimicrobial agents. J Antimicrob Chemother 27:343–353. doi:10.1093/jac/27.3.343

    Article  CAS  PubMed  Google Scholar 

  104. Bruin JP, Ijzerman EP, den Boer JW, Mouton JW, Diederen BM (2012) Wild-type MIC distribution and epidemiological cut-off values in clinical Legionella pneumophila serogroup 1 isolates. Diagn Microbiol Infect Dis 72:103–108. doi:10.1016/j.diagmicrobio.2011.09.016

    Article  PubMed  Google Scholar 

  105. Stewart CR, Rossier O, Cianciotto NP (2009) Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 191:1537–1546. doi:10.1128/JB.01531-08

    Article  CAS  PubMed  Google Scholar 

  106. Vilde JL, Dournon E, Rajagopalan P (1986) Inhibition of Legionella pneumophila multiplication within human macrophages by antimicrobial agents. Antimicrob Agents Chemother 30:743–748. doi:10.1128/AAC.30.5.743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Barker J, Brown MR (1995) Speculations on the influence of infecting phenotype on virulence and antibiotic susceptibility of Legionella pneumophila. J Antimicrob Chemother 36:7–21. doi:10.1093/jac/36.1.7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The views expressed in this chapter do not necessarily reflect those of Xian-Zhi Li’s affiliation, Health Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morita, Y., Li, XZ. (2016). Antimicrobial Resistance and Drug Efflux Pumps in Vibrio and Legionella . In: Li, XZ., Elkins, C., Zgurskaya, H. (eds) Efflux-Mediated Antimicrobial Resistance in Bacteria. Adis, Cham. https://doi.org/10.1007/978-3-319-39658-3_12

Download citation

Publish with us

Policies and ethics