Skip to main content

Micro-assembly

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

Abstract

The trend toward miniaturisation of the last decade has caused a real revolution in the manufacturing of many products and systems in several fields, trying to reduce volume and weight, and integrate more functions in a smaller space. Besides the various manufacturing techniques presented in the previous chapters of the book, growing interest has been gained by the manipulation and the assembly of different micro-components for the production of such complex systems, specifically of hybrid micro-products. In this context, this chapter provides a critical overview on different micro-assembly aspects, including: methods, robots for micro-assembly with related examples, micro-manipulation strategies and tools, vision and force sensing for micro-assembly, consideration of environmental conditioning, and an example of a robotized micro-assembly work-cell developed at the authors’ laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Micro-System Technologies.

  2. 2.

    Selective Compliance Assembly Robot Arm.

  3. 3.

    Centre Suisse d’Électronique et Microtechnique (Swiss Center for Electronics and Microtechnology).

  4. 4.

    Scanning Electron Microscope.

  5. 5.

    Focused Ion Beam.

References

  1. Ruggeri S (2013) Advanced robotic applications: performance improvement techniques for industrial robots acting at the macro- and micro-scale. Scholar’s Press, Germany. ISBN 978-3-639-51557-2

    Google Scholar 

  2. Antonelli D, Fantoni G, Porta M, Santochi M (2010) A methodology for the selection of micro-assembly techniques. Am J Eng Appl Sci 3:718–722

    Article  Google Scholar 

  3. Santochi M, Fantoni G, Fassi I (2005) Assembly of micro-products: state of the art and new solutions. In AMST’05 advanced manufacturing systems and technology, pp 99–115

    Google Scholar 

  4. Cecil J, Powell D, Vasquez D (2007) Assembly and manipulation of micro devices-A state of the art survey. Robot Comput Integr Manuf 23(5):580–588

    Article  Google Scholar 

  5. Fatikow S, Rembold U (2010) Microrobotics. In: Microsystem technology and microrobotics. Springer, Berlin

    Google Scholar 

  6. Börhringer KF, Fearing RS, Goldberg KY (1999) Microassembly. In: Nof SY (ed) Handbook of industrial robotics, 2nd edn. Wiley, New York

    Google Scholar 

  7. Popa DO, Lee WH, Murthy R, Das AN, Stephanou HE (2007) High-yield automated MEMS assembly. In: Proceedings of the 3rd annual IEEE conference on automation science and engineering, Scottsdale, AZ, USA, 22–25 Sept

    Google Scholar 

  8. Dechev N (2010) Robotic microassembly of 3D MEMS structures. In: Gauthier M, Régnier S (eds) Robotic micro-assembly. Wiley, Great Britain

    Google Scholar 

  9. Van Brussel H, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, Zussman E (2000) Assembly of microsystems. CIRP Ann 49(2):451–472

    Article  Google Scholar 

  10. Cohn MB, Boehringer KF, Noworolski JM, Singh A, Keller CG, et al. (1998) Microassembly technologies for MEMS. In Proceedings of SPIE 3514, Micromachined Devices and Components IV, 8 September 1998

    Google Scholar 

  11. Gauthier M, Régnier S (2010) Preface. In: Gauthier M, Régnier S (eds) Robotic micro-assembly. Wiley, Great Britain

    Chapter  Google Scholar 

  12. Mayyas MA (2007) Methodologies for automated microassembly. Ph.D. thesis, The University of Texas at Arlington

    Google Scholar 

  13. Popa DO, Stephanou HE (2004) Micro and mesoscale robotic assembly. J Manuf Processes 6(1):52–71

    Article  Google Scholar 

  14. Keller C, Howe RT (1997) Hexsil tweezers for teleoperated micro-assembly. In: Proceedings of IEEE workshop on micro electro mechanical systems (MEMS), Nagoya, Japan, January 1997, pp 72–77

    Google Scholar 

  15. Randall J, Hughes G, Geisberger A, Tsui K, Saini R, Ellis M, Skidmore G (2004) Realizing complex microsystems: a deterministic parallel assembly approach. In: Technical proceedings of the 2004 NSTI nanotechnology conference and trade show, 3(11):499–502. ISBN 0-9728422-9-2

    Google Scholar 

  16. Nelson B (2010) Self-assembly. Lecture slides, Summer school in microrobotics and self-assembly for hybrid MEMS, Besançon, France, 29 June–2 July 2010

    Google Scholar 

  17. Prasad R, Böhringer KF, MacDonald NC (1995) Design, fabrication, and characterization of SCS latching snap fasteners for micro assembly. In: Proceedings of ASME international mechanical engineering congress and exposition (IMECE’95), San Francisco, California, November 1995

    Google Scholar 

  18. Hansen HN, Arentoft M, Tosello G, Gegeckaite A (2010) Micro-mechanical-assembly. In: Qin Yi (ed) Micro-manufacturing engineering and technology. William Andrew Publishing, Boston

    Google Scholar 

  19. Lutz P, Régnier S (2010) Future Prospects. In: Chaillet N, Régnier S (eds) Microrobotics for micromanipulation. Wiley-ISTE, Great Britain

    Google Scholar 

  20. Fantoni G, Santochi M, Dini G, Tracht K, Scholz-Reiter B, Fleischer J, Lien TK, Seliger G, Reinhart G, Franke J, Hansen HN, Verl A (2014) Grasping devices and methods in automated production processes. CIRP Ann 2014—Manuf Technol 63(2):679–701

    Google Scholar 

  21. Gauthier M (2010) Microhandling strategies and microassembly in submerged medium. In: Gauthier M, Régnier S (eds) Robotic micro-assembly. Wiley, Great Britain

    Chapter  Google Scholar 

  22. Sariola V (2010) Hybrid microassembly. Lecture slides, Summer school in microrobotics and self-assembly for hybrid MEMS, Besançon, France, 29 June–2 July 2010

    Google Scholar 

  23. Fang J, Böhringer KF (2005) High yield batch packaging of micro devices with uniquely orienting self-assembly. In: Proceedings of IEEE international conference on micro electro mechanical systems (MEMS), Miami, USA, 30 January–3 February 2005

    Google Scholar 

  24. Stauth SA, Parviz BA (2006) Self-assembled single-crystal silicon circuits on plastic. In: Proceedings of national academy of sciences of United States of America, 103(38):13922–13927

    Google Scholar 

  25. Harsh KF, Bright VM, Lee YC (1999) Solder self-assembly for three-dimensional microelectromechanical systems. Sens Actuators A 77:237–244

    Article  Google Scholar 

  26. Zhou Q, Sariola V (2010) Unified view of robotic microhandling and self-assembly. In: Gauthier M, Régnier S (eds) Robotic micro-assembly. Wiley, Great Britain

    Google Scholar 

  27. Zhou Q, Chang B (2006) Microhandling using robotic manipulation and capillary self-alignment. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, IROS 2006, Oct 2006, pp 5883–5888

    Google Scholar 

  28. López Tarazón R (2010) Chapter 19—robotics in micro-manufacturing and micro-robotics. In: Qin Y (ed) Micro and nano technologies. William Andrew Publishing, Boston, pp 315–323, Micro-Manufacturing Engineering and Technology, ISBN 9780815515456

    Google Scholar 

  29. Fukuda T, Arai F (1999) Microrobotics. In: Nof SY (ed) Handbook of industrial robotics, 2nd edn. Wiley, New York

    Google Scholar 

  30. Agnus J, Boukallel M, Clévy C, Dembélé S, Régnier S (2010) Architecture of a micromanipulation station. In: Chaillet N, Régnier S (eds) Microrobotics for micromanipulation. Wiley-ISTE, Great Britain

    Google Scholar 

  31. G1-171S SCARA robot by EPSON ROBOTICS. Available http://robots.epson.com/product-detail/1. 11 Oct 2016

  32. RP-1ADH robot by Mitsubishi Electric. Available https://www.mitsubishielectric.it/en/. 11 Oct 2016

  33. PocketDelta robot by ASYRIL SA. Available http://www.asyril.com/en/products/delta-robots.html. 11 Oct 2016

  34. Sánchez AJ (2010) Chapter 18—handling for micro-manufacturing. In: Qin Y (ed) Micro and nano technologies. William Andrew Publishing, Boston, pp 298–314, Micro-Manufacturing Engineering and Technology, ISBN 9780815515456

    Google Scholar 

  35. Prusi T, Vuola A, Siltala N, Heikkilae R, Tuokko R (2010) Robots for micro and desktop factories: examples and experiences. In: Proceedings of 41st international symposium on robotics (ISR 2010) and 6th German conference on robotics (ROBOTIK 2010), 7–9 June 2010, pp 1–7

    Google Scholar 

  36. Hesselbach J, Wrege J, Raatz A, Heuer K, Soetebier S (2005) Microassembly—approaches to meet the requirements of accuracy. In: Löhe D, Haußelt J (eds) Proceedings of microengineering of metals and ceramics: part ii: special replication techniques, automation and properties. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  37. Siltala N, Vuola A, Prusi T, Heikkilä R, Tuokko R (2012) Comparison of five low cost manipulators for microfactories. In: Proceedings of 8th international workshop on microfactories (IWMF 2012), Tampere, Finland, 8–20 June 2012, pp 1–8

    Google Scholar 

  38. Burisch A, Wrege J, Raatz A, Hesselbach J, Degen R (2007) PARVUS—miniaturised robot for improved flexibility in micro production. Assembly Autom 27(1):65–73

    Article  Google Scholar 

  39. Hesselbach J, Raatz A, Wrege J, Soetebier S (2004) Design and analysis of a macro parallel robot with flexure hinges for micro assembly tasks. In: Proceedings of 35th international symposium on robotics (ISR), Paris, France, 23–26 Mar 2004

    Google Scholar 

  40. Codourey A, Perroud S, Mussard Y (2006) Miniature reconfigurable assembly line for small products, precision assembly technologies for mini and micro products. In: Ratchev S (ed) Proceedings of international precision assembly seminar (IPAS’06), precision assembly technologies for mini and micro products, Springer, Bad Hofgastein, Austria, 19–21 Feb 2006, pp 193–200

    Google Scholar 

  41. Hexapods by Physik instrumente. Available http://www.physikinstrumente.com/products/parallel-kinematic-hexapods.html. 11 Oct 2016

  42. Driesen W, Varidel T, Régnier S, Breguet JM (2005) Micro manipulating by adhesion with two collaborating mobile micro robots. J Micromech Microeng 15(10):S259–S267

    Article  Google Scholar 

  43. Driesen W, Varidel T, Mazerolle S, Bergander A, Breguet JM (2005) Flexible micro manipulation platform based on tethered cm3-sized mobile micro robots. In: Proceedings of IEEE international conference on robotics and biomimetics (ROBIO), Shatin, N.T., China, 5–9 July 2005

    Google Scholar 

  44. Woern H, Seyfried J, Fahlbusch S, Buerkle A, Schmoeckel F (2000) Flexible microrobots for micro assembly tasks. In: Proceedings of IEEE symposium on micromechanics and human science, Nagoya, Japan, 22–25 Oct 2000, pp 135–143

    Google Scholar 

  45. Donald B, Levey C, Mcgray C, Paprotny I, Rus D (2006) An untethered, electrostatic, globally controllable MEMS micro-robot. J Microelectromech Syst 15(1):1–15

    Article  Google Scholar 

  46. Mitsumoto N, Fukuda T, Arai F, Tadashi H, Idogaki T (1996) Self-organizing multiple robotic system (a population control through biologically inspired immune network architecture). In: Proceedings of 1996 IEEE international conference on robotics and automation vol 2, Minneapolis, MN, 1996, pp 1614–1619

    Google Scholar 

  47. Yang JP, Deng XC, Chong TC (2005) An electro-thermal bimorph-based microactuator for precise track-positioning of optical disk drives. J Micromech Microeng 15(5):958–965

    Article  Google Scholar 

  48. Micromanipulator for Electron Microscopy by Kleindiek Nanotechnik. Available http://www.nanotechnik.com/mm3a-em.html. 11 Oct 2016

  49. Physical Intelligence Department, Germany. Available http://pi.is.mpg.de/index.html. 11 Oct 2016

  50. Torres NA, Ruggeri S, Popa DO (2014) Untethered microrobots actuated with focused permanent magnet field. In: Proceedings of the ASME 2014 international design engineering technical conferences and computers and information in engineering conference IDETC/CIE 14, Buffalo, New York, USA, 17–20 Aug 2014

    Google Scholar 

  51. Pagano C, Fassi I (2013) Devices and techniques for contact microgripping. In: Zhang D (ed) Advanced mechatronics and MEMS devices, microsystems vol 23. Springer, New York, pp 165–178

    Google Scholar 

  52. Gauthier M, Lambert P, Régnier S (2010) Microhandling and micromanipulation strategies. In: Chaillet N, Régnier S (eds) Microrobotics for micromanipulation. Wiley-ISTE, Great Britain

    Google Scholar 

  53. Hubert A (2010) Actuators and micro-actuators for robotics applications. Lecture slides, Summer school in microrobotics and self-assembly for Hybrid MEMS, Besançon, France, 29 June–2 July 2010

    Google Scholar 

  54. Agnus J (2003) Contribution à la micromanipulation. Étude, réalisation, characterisation et commande d’une micropince piézoélectrique. Ph.D. thesis, University of Franche-Comté

    Google Scholar 

  55. Boudaoud M, Haddab Y, Le Gorrec Y (2010) Modelling of a MEMS-based microgripper: application to dexterous micromanipulation. In: Proceedings of international conference on intelligent robots and systems (IROS’10), Taipei, Taiwan, 18–22 Oct 2010

    Google Scholar 

  56. Mølhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15:1265–1270

    Article  Google Scholar 

  57. Micro-gripper by Zyvex. Available http://www.zyvex.com/Documents/9703.PDF. 11 Oct 2016

  58. Zhang H, Burdet E, Hutmacher DW, Poo AN, Bellouard Y, Clavel R, Sidler T (2002) Robotic micro-assembly of scaffold/cell constructs with a shape memory alloy gripper. In: Proceedings of IEEE international conference on robotics and automation (ICRA’02), pp 1483–1488, Washington, DC, USA, 11–15 May 2002

    Google Scholar 

  59. Hesselbach J, Buettgenbach S, Wrege J, Buetefisch S, Graf C (2001) Centering electrostatic microgripper and magazines for microassembly tasks. In: Proceeding of SPIE 4568, microrobotics and microassembly III, pp 270–277, Boston, MA, USA, 28 Oct 2001

    Google Scholar 

  60. Biganzoli F, Fassi I, Pagano C (2005) Development of a gripping system based on capillary force. In: Proceedings of the 6th IEEE international symposium on assembly and task planning: from nano to macro assembly and manufacturing (ISATP 2005), pp 36–40. Canada, 19–21 July 2005

    Google Scholar 

  61. Lambert P, Seigneur F, Koelemeijer S, Jacot J (2006) Design of a capillary gripper for a submillimetric application. In: Ratchev S (ed) Proceedings of international precision assembly seminar (IPAS’06), Springer, Bad Hofgastein, Austria, 2006, pp 3–10

    Google Scholar 

  62. Kochan A (1997) European project develops “ice” gripper for microsized components. Assembly Autom 17(2):114–115

    Article  Google Scholar 

  63. Lang D, Tichem M, Blom S (2006) The investigation of intermediates for phase changing microgripping. In: Proceedings of international workshop on microfactories (IWMF), Besancon, France, Oct 2006

    Google Scholar 

  64. Feddema JT, Xavier P, Brown R (1999) Micro-assembly planning with Van der Waals force. In: Proceedings of international symposium on assembly and task planning, Porto, Portugal

    Google Scholar 

  65. Zesch W, Brunner M, Weber A (1997) Vacuum tool for handling microobjects with a NanoRobot. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), vol 2, Albuquerque, New Mexico, USA, 20–25 Apr 1997, pp 1761–1776

    Google Scholar 

  66. Arai F, Endo T, Yamuchi R, Fukuda T (2006) 3D 6DOF manipulation of micro-object using laser trapped microtool. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Orlando, Florida, USA, 15–19 May 2006

    Google Scholar 

  67. Chapin SC, Germain V, Dufresne ER (2006) Automated trapping, assembly, and sorting, with holographic optical tweezers. Opt Express 14(26):13095–13100

    Article  Google Scholar 

  68. Subramanian A, Vikramaditya B, Nelson BJ, Bell D, Dong L (2005) Dielectrophoretic micro/nanoassembly with microtweezers and nanoelectrodes. In: Proceedings of the IEEE international conference on advanced robotics (ICAR), Seattle, USA, 18–20 July 2005

    Google Scholar 

  69. Fantoni G, Santochi M (2005) A modular contactless feeder for microparts. CIRP Ann 54(1):23–26

    Article  Google Scholar 

  70. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82(6):3314–3329

    Article  Google Scholar 

  71. Sakuma S, Yamanishi Y, Arai F (2009) Magnetically driven microtools actuated by a focused magnetic field for separating of micro-particles. J Robot Mechatron 21(2):209–215

    Article  Google Scholar 

  72. Reinhart G, Heinz M, Stock J, Zimmermann J, Schilp M, Zitzmann A, Hellwig J (2011) Non-contact handling and transportation for substrates and microassembly using ultrasound air-film-technology. In: Proceedings of advanced semiconductor manufacturing conference (ASMC), 22nd annual IEEE/SEMI, Saratoga Springs, NY, USA, 16–18 May 2011, pp 1–6

    Google Scholar 

  73. Vandaele V, Lambert P, Delchambre A (2005) Non-contact handling in microassembly: acoustical levitation. Precis Eng 29(4):491–505

    Article  Google Scholar 

  74. Chen BK, Zhang Y, Sun Y (2009) Active release of microobjects using a MEMS microgripper to overcome adhesion forces. J Microelectromech Syst 18(3):652–659

    Article  Google Scholar 

  75. Fantoni G, Porta M (2008) A critical review of releasing strategies in microparts handling. In: Ratchev S, Koelemeijer S (eds) Proceedings of international precision assembly seminar (IPAS’08), micro-assembly technologies and applications, Springer, Chamonix, France 10–13 Feb 2008, pp 223–234

    Google Scholar 

  76. Haliyo DS, Régnier S, Guinot JC (2003) μmad, the adhesion based dynamic micro-manipulator. Eur J Mech A Solids 22:903–916

    Article  MATH  Google Scholar 

  77. Saito S, Himeno H, Takahashi K (2003) Electrostatic detachment of an adhering particle from a micromanipulated probe. J Appl Phys 93(4):2219–2224

    Article  Google Scholar 

  78. Haliyo DS, Dionnet F, Regnier S (2006) Controlled rolling of microobjects for autonomous manipulation. J Micromechatronics 3(2):75–101

    Article  Google Scholar 

  79. Bark C, Binnenboese T (1998) Gripping with low viscosity fluids. In: Proceedings of the IEEE eleventh annual international workshop on micro electro mechanical systems (MEMS’98), Heidelberg, Germany, 25–29 Jan 1998, pp 301–305

    Google Scholar 

  80. Petrovic D, Popovic G, Chatzitheodoridis E, Del Medico O, Almansa A, Sümecz F, Brenner W, Detter H (2002) Gripping tools for handling and assembly of microcomponents. In: Proceedings of 23rd international conference on microelectronics (MIEL 2002) vol 1, Niš, Yugoslavi, 12–15 May 2002, pp 247–250

    Google Scholar 

  81. Schacklock A, Sun W (2005) Integrating microscope and perspective views. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’05), Barcelona, Spain, 18–22 Apr 2005, pp 454–459

    Google Scholar 

  82. Chen H, Xi N, Li G, Saeed A (2004) CAD-guided manufacturing of nanostructures using nanoparticles. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’04), Sendai, Japan, 28 Sept–2 Oct 2004, pp 595–600

    Google Scholar 

  83. Bert J, Dembélé S, Lefort-Piat N (2006) Trifocal transfer based novel view synthesis for micromanipulation, advances in visual computing. Lecture notes in computer science, vol 4291. Springer, Berlin, pp 411–420

    Google Scholar 

  84. Yang G, Nelson BJ (2003) Wavelet-based autofocusing and unsupervised segmentation of microscopic images. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, NV, USA, 27–31 Oct 2003

    Google Scholar 

  85. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334

    Article  Google Scholar 

  86. Fryer JG, Brown DC (1986) Lens distortion for close-range photogrammetry. Photogram Eng Remote Sens 52:51–58

    Google Scholar 

  87. Nelson BJ, Ralis S, Zhou Y, Vikramaditya B (1999) Force and vision feedback for robotic manipulation of the microworld. In: Experimental robotics VI, vol 250. Lectures notes in control and information sciences, Springer, Berlin, pp 433–442

    Google Scholar 

  88. Enikov E, Nelson BJ (2000) Three-dimensional microfabrication for a multi-degree-of-freedom capacitive force sensor using fibre-chip coupling. J Micromechatronics Microeng 10(4):492–497

    Article  Google Scholar 

  89. Rougeot P, Dauge M, Dembélé S, Chaillet N (2003) Vision-based control of AFM-based micromanipulation. In: Proceedings of international advanced robotics program, Moscow, Russia

    Google Scholar 

  90. Ralis S, Vikramaditya B, Nelson BJ (2000) Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies. IEEE Trans Electron Packag Manuf 23(2):123–131

    Article  Google Scholar 

  91. Haliyo D, Rollot Y, Regnier S (2001) Dynamical strategies for the micro-manipulation by adhesion. In: Proceedings of SPIE 4568, microrobotics and microassembly III, pp 261–269, Boston, MA, USA, 28 Oct 2001

    Google Scholar 

  92. Verettas I, Clavel, R Codourey A (2005) Pocket factory: concept of miniaturized modular cleanrooms. In: 1st Topical meeting on microfactories “Desktop MEMS and nano factories” TMMF2005, Tsukuba, Japan, 17–19 Oct 2005

    Google Scholar 

  93. Verettas I (2006) Microfabrique: méthodologie de conception de systèmes de production miniaturisés et modulaires, disposant d’un environnement salles blanches. Ph.D. thesis, EPFL, Lausanne

    Google Scholar 

  94. Zhou Q, Aurelian A, Chang B, del Corral C, Koivo HN (2002) Microassembly system with controlled environment. J Micromechatronics 2(3):227–248

    Article  Google Scholar 

  95. Fontana G, Ruggeri S, Fassi I, Legnani G (2014) A mini work-cell for handling and assembling microcomponents. Assembly Autom J Emerald 34(1):27–33. ISSN: 0144-5154

    Google Scholar 

  96. Ruggeri S, Fontana G, Fassi I, Legnani G, Pagano C (2015) Dispositivo di manipolazione e metodo per manipolare a vuoto un componente (A vacuum manipulation device and a method for manipulating a component by means of a vacuum). Italian Patent No. MI2013A000451, filed on 26 Mar 2013, Milan. Publication date: 27 Sept 2014. Released on 20 July 2015. EP (European Patent) pending No. EP2978570. Publication date 3 Feb 2016

    Google Scholar 

  97. Fontana G, Ruggeri S, Fassi I, Legnani G (2014) Precision handling of electronic components for PCB rework. In: Ratchev S (ed) Precision assembly technologies and systems—7th IFIP WG 5.5 international precision assembly seminar, IPAS 2014, Chamonix, France, 16–18 Feb 2014, Revised Selected Papers, Proceedings Series: IFIP advances in information and communication technology, vol 435, pp 52–60. Springer, Berlin. ISBN: 978-3-662-45585-2

    Google Scholar 

  98. Fontana G, Ruggeri S, Fassi I, Legnani G (2013) Flexible vision based control for micro-factories. In: Proceeding of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/MNS 2013), Portland, OR, USA, 4–7 Aug 2013. ISBN: 978-0-7918-5584-3

    Google Scholar 

  99. Fontana G (2014) Assembly at the microscale: design and implementation of a robotised work-cell. Ph.D. thesis, University of Brescia

    Google Scholar 

  100. Fontana G, Ruggeri S, Fassi I, Legnani G (2012) Calibration strategies for a manipulation work-cell. In: Proceeding of 8th international workshop on microfactories (IWMF 2012), Tampere, Finland, 18–20 June 2012

    Google Scholar 

  101. Ruggeri S, Fontana G, Pagano C, Fassi I, Legnani G (2012) Handling and manipulation of microcomponents: work-cell design and preliminary experiments. In: Ratchev S (ed) Precision assembly technologies and systems—6th IFIP WG 5.5 international precision assembly seminar, IPAS 2012, Chamonix, France, 12–15 Feb 2012, Proceedings Series: IFIP advances in information and communication technology, vol 371, pp 65–72, Springer, Berlin. ISBN: 978-3-642-28162-4

    Google Scholar 

  102. Ruggeri S, Fontana G, Fassi I, Legnani G (2014) Performance evaluation methods for microgrippers. In: Proceeding of the ASME international design engineering technical conferences and computers and information in engineering conference (IDETC/CIE 2014), Buffalo, New York, USA, 17–20 Aug 2014. ISBN: 978-0-7918-4635-3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Ruggeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ruggeri, S., Fontana, G., Fassi, I. (2017). Micro-assembly. In: Fassi, I., Shipley, D. (eds) Micro-Manufacturing Technologies and Their Applications. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39651-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39651-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39650-7

  • Online ISBN: 978-3-319-39651-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics