Skip to main content

Micro-scale Geometry Measurement

  • Chapter
  • First Online:
Micro-Manufacturing Technologies and Their Applications

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 2135 Accesses

Abstract

The ability to produce complex, high-precision, miniature components is key to the transition to high-value manufacturing. The advanced manufacturing industries, using precision machining techniques, such as diamond turning, injection moulding, micro-milling and micro-electro-discharge machining, currently have a number of capabilities for measuring small-scale structures with micro-scale tolerances, either with tactile or non-tactile systems. Metrology is essential for the reduction of dimensional tolerances, which allows the production of more efficient machines and the improvement of their longevity by reducing play or wear. In this chapter, contact and non-contact techniques that can be used to measure 3D features on the micro-metre scale are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tosello G, Hansen HN, Marinello F, Gasparin S (2010) Replication and dimensional quality control of industrial nanoscale surfaces using calibrated AFM measurements and SEM image processing. Ann CIRP 59:563–568

    Article  Google Scholar 

  2. Fang FZ, Zhang XD, Weckenmann A, Zhang GX, Evans C (2013) Manufacturing and measurement of freeform optics. Ann CIRP 62:823–846

    Article  Google Scholar 

  3. ISO 25178 part 601 (2010) Geometrical product specifications (GPS)—surface texture: Areal–Part 601: Nominal characteristics of contact (stylus) instruments. International Organization for Standardization

    Google Scholar 

  4. Leach RK (ed) (2014) Fundamental principles of engineering nanometrology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  5. Whitehouse DJ (2010) Handbook of surface and nanometrology, 2nd edn. CRC Press, Florida

    Google Scholar 

  6. Thomas TR (1999) Rough surfaces, 2nd edn. Imperial College Press, London

    Google Scholar 

  7. Leach RK (2001) The measurement of surface texture using stylus instruments. NPL Good Practice Guide. National Physical Laboratory, UK

    Google Scholar 

  8. Radhakrishnan V (1970) Effect of stylus radius on the roughness value measured with tracing stylus instruments. Wear 16:325

    Article  Google Scholar 

  9. McCool JI (1984) Assessing the effect of stylus tip radius and flight on surface topography measurements. ASME J Tribol 106:202–209

    Article  Google Scholar 

  10. Mendeleyev V (1997) Dependence of measuring errors of rms roughness on stylus tip size for mechanical profilers. Appl Opt 36:9005–9009

    Article  Google Scholar 

  11. Lee C-O, Park K, Park BC, Lee YW (2005) An algorithm for stylus instruments to measure aspheric surfaces. Meas Sci Technol 16:1215

    Article  Google Scholar 

  12. Lee DH (2013) 3-dimensional profile distortion measured by stylus type. Measurement 46:803–814

    Article  Google Scholar 

  13. Fang H, Xu B, Chen W, Tang H, Zhao S (2015) A slope-adapted sample-tilting method for profile measurement of microstructures with steep surfaces. J Nanomater ID 253062 (in press)

    Google Scholar 

  14. Hocken RJ, Pereira PH (eds) (2011) Coordinate measuring machines and systems, 2nd edn. CRC Press, New York

    Google Scholar 

  15. ISO 10360 part 3 (2000) Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring machines (CMM)—Part 3: CMMs with the axis of a rotary table as the fourth axis. International Organization for Standardization

    Google Scholar 

  16. Vermeulen MMPA, Rosielle PCJN, Schellekens PHJ (1998) Design of a high-precision 3D-coordinate measuring machine. Ann CIRP 47:447–450

    Article  Google Scholar 

  17. Widdershoven I, Donker RL, Spaan HAM (2011) Realization and calibration of the “Isara 400” ultra-precision CMM. J Phys: Conf Ser 311:012002

    Google Scholar 

  18. Jäger G, Manske E, Hausotte T, Büchner H-J, Grünwald R, Schott W (2001) Nanomeasuring technology—nanomeasuring machine. In: Proceedings of the ASPE, Crystal City, VA, Nov. 2001, pp 23–27

    Google Scholar 

  19. Leach RK (2015) Abbe error/offset. In: Laperrière L, Reinhart G (eds) CIRP encyclopaedia of production engineering. Springer, Berlin

    Google Scholar 

  20. Fan K-C, Fei Y-T, Wang W, Chen Y, Chen Y-C (2008) Micro-CMM. In: Smart devices and machines for advanced manufacturing, pp 319–335

    Google Scholar 

  21. Claverley JD, Leach RK (2015) A review of the existing performance verification infrastructure for micro-CMMs. Precis Eng 39:1–15

    Article  Google Scholar 

  22. ISO 10360 part 1 (2001) Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring machines (CMM). International Organization for Standardization

    Google Scholar 

  23. Weckenmann A, Estler T, Peggs G, McMurtry D (2004) Probing systems in dimensional metrology. Ann CIRP 53:657–684

    Article  Google Scholar 

  24. Küng A, Meli F, Thalmann R (2007) Ultraprecision micro-CMM using a low force 3D touch probe. Measur Sci Technol 18:319–327

    Article  Google Scholar 

  25. Chu C-L, Chiu C-Y (2007) Development of a low-cost nanoscale touch trigger probe based on two commercial DVD pick-up heads. Measur Sci Technol 18:1831–1842

    Article  Google Scholar 

  26. Haitjema H, Pril WO, Schellekens PHJ (2001) Development of a silicon-based nanoprobe system for 3-D measurements. Ann CIRP 50:365–368

    Article  Google Scholar 

  27. Brand U, Kleine-Besten T, Schwenke H (2000) Development of a special CMM for dimensional metrology on microsystem components. In: Proceedings of the ASPE, Scottsdale, AZ, Oct. 2000, pp 542–546

    Google Scholar 

  28. Ruther P, Bartholomeyczik J, Trautmann A, Wandt M, Pau O, Dominicus W, Roth R, Seitz K, Strauss W (2005) Novel 3D piezoresistive silicon force sensor for dimensional metrology of micro components. In: Proceedings of the IEEE sensor, pp 1006–1009

    Google Scholar 

  29. Dai G, Bütefisch S, Pohlenz F, Danzebrink H-U (2009) A high precision micro/nano CMM using piezoresistive tactile probes. Measur Sci Technol 20:084001

    Article  Google Scholar 

  30. Muralikrishnan B, Stone J, Stoup J (2007) Roundness measurements using the NIST fibre probe. In: Proceedings of the ASPE, Dallas, TX, Oct. 2007, pp 89–92

    Google Scholar 

  31. Takaya Y, Takahashi S, Miyoshi T, Saito K (1999) Development of the nano-CMM probe based on laser trapping technology. Ann CIRP 48:421–424

    Article  Google Scholar 

  32. Seugling R, Darnell I (2008) Investigating scaling limits of a fibre based resonant probe for metrology applications. In: Proceedings of the ASPE, Livermore, CA, Oct. 2008

    Google Scholar 

  33. Claverley JD, Leach RK (2013) Development of a three-dimensional vibrating tactile probe for miniature CMMs. Precis Eng 37:491–499

    Article  Google Scholar 

  34. Lee ES, Burdekin M (2001) A hole plate artifact design for volumetric error calibration of a CMM. Int J Adv Manuf Technol 17:508–515

    Article  Google Scholar 

  35. Schwenke H, Franke M, Hannaford J, Kunzmann H (2005) Error mapping of CMMs and machine tools by a single tracking interferometer. Ann CIRP 54:475–478

    Article  Google Scholar 

  36. Schwenke H, Knapp W, Haitjema H, Weckenmann A, Schmitt R, Delbressine F (2008) Geometric error measurement and compensation for machines—an update. Ann CIRP 57:660–675

    Article  Google Scholar 

  37. Zhang G, Veale R, Charlton T, Borchardt B, Hocken R (1985) Error compensation of coordinate measuring machines. Ann CIRP 34:445–448

    Article  Google Scholar 

  38. Krutha J-P, Vanhercka P, Van den Bergha C (2001) Compensation of static and transient thermal errors on CMMs. Ann CIRP 50:377–380

    Article  Google Scholar 

  39. Aggogeri F, Barbato G, Barini EM, Genta G, Levi R (2011) Measurement uncertainty assessment of coordinate measuring machines by simulation and planned experimentation. CIRP-JMST 4:51–56

    Google Scholar 

  40. ISO 10360 part 6 (2001) Geometrical product specifications (GPS)—acceptance and reverification tests for coordinate measuring machines (CMM)—Part 6: estimation of errors in computing Gaussian associated features. International Organization for Standardization

    Google Scholar 

  41. Danzl R, Helmli F, Rubert P, Prantl M (2008) Optical roughness measurements on specially designed roughness standards. Proc SPIE 7102:71020M

    Article  Google Scholar 

  42. Hemli F (2011) Focus-variation instruments. In: Leach RK (ed) Optical measurement of surface topography. Springer, Berlin

    Google Scholar 

  43. Scherer S (2007) Focus-variation for optical 3D measurement in the micro- and nano-range. In: Bauer N (ed) Handbuch zur Industriellen Bildverarbeitung. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  44. Zhang Y, Zhang Y, Wen CY (2000) A new focus measure method using moments. Image Vision Comput 18:959–965

    Article  Google Scholar 

  45. Helmli FS, Scherer S (2001) Adaptive shape from focus with an error estimation in light microscopy. In: ISPA 2001, Pula, Croatia, June 2001, pp 188–193

    Google Scholar 

  46. Danzl R, Helmli F, Scherer S (2011) Focus variation—a robust technology for high resolution optical 3D surface metrology. J Mech Eng 57:245–256

    Article  Google Scholar 

  47. ISO 25178 part 604 (2001) Geometrical product specification (GPS)—surface texture: Areal–Part 604: Nominal characteristics of non-contact (coherence scanning interferometry) instruments. International Organization for Standardization

    Google Scholar 

  48. de Groot P (2011) Coherence scanning interferometry. In: Leach RK (ed) Optical measurement of surface topography, vol 9. Springer, Berlin

    Google Scholar 

  49. de Groot P (2015) Principles of interference microscopy for the measurement of surface topography. Adv Opt Photon 7:1–65

    Article  Google Scholar 

  50. de Groot P, Colonna de Lega X, Kramer J, Turzhitsky M (2002) Determination of fringe order in white-light interference microscopy. Appl Opt 41:4571–4578

    Article  Google Scholar 

  51. Colonna de Lega X, Biegen J, de Groot P, Häusler G, Andretzky P (2003) Large field-of-view scanning white-light interferometers. In: Proceedings of the ASPE, Portland, OR, Oct. 2003, p 1275

    Google Scholar 

  52. Wyant JC, Schmit J (1998) Large field of view, high spatial resolution, surface measurements. Int J Mach Tools Manuf 38:691–698

    Article  Google Scholar 

  53. Gao F, Leach RK, Petzing J, Coupland JM (2008) Surface measurement errors using commercial scanning white light interferometers. Measur Sci Technol 19:015303

    Article  Google Scholar 

  54. Schwider J, Zhou L (1994) Dispersive interferometric profilometer. Opt Lett 19:995–997

    Article  Google Scholar 

  55. Marron JC, Gleichman KW (2000) Three-dimensional imaging using a tunable laser source. Opt Eng 39:47–51

    Article  Google Scholar 

  56. Jiang X (2012) Precision surface measurement. Phil Trans R Soc A 370:4089–4114

    Article  Google Scholar 

  57. Paz VF, Peterhänsel S, Frenner K, Osten W (2012) Solving the inverse grating problem by white light interference Fourier scatterometry. Light: Sci Appl 1:e36

    Google Scholar 

  58. Colonna de Lega X, de Groot P (2005) Optical topography measurement of patterned wafers. AIP Conf Proc 788:432–436

    Article  Google Scholar 

  59. Minsky M (1961) Microscopy apparatus. US patent, vol US3013467A

    Google Scholar 

  60. Minsky M (1988) Memoir on inventing the confocal microscope. Scanning 10:128–138

    Article  Google Scholar 

  61. Wilson T (ed) (1990) Confocal microscopy. Academic Press, London

    Google Scholar 

  62. Diaspro A (ed) (2002) Confocal and two—photon microscopy: foundations, applications, and advances. Wiley-Liss, New York

    Google Scholar 

  63. Hibbs AR (2004) Confocal microscopy for biologists. Kluwer Press, New York

    Book  Google Scholar 

  64. Artigas R (2001) Imaging confocal microscopy. In: Leach RK (ed) Optical measurement of surface topography. Springer, Berlin

    Google Scholar 

  65. Semwogere D, Weeks ER (2005) Confocal microscopy. In: Encyclopedia of biomaterials and biomedical engineering. Taylor&Francis, London

    Google Scholar 

  66. Brakenhoff GJ, Blom P, Barends P (1976) Confocal scanning light microscopy with high aperture immersion lenses. J Microsc 117:21932

    Google Scholar 

  67. Wilson T (2011) Resolution and optical sectioning in the confocal microscope. J Microsc 244:113–121

    Article  Google Scholar 

  68. Leach RK (ed) (2011) Optical measurement of surface topography. Springer, Berlin, Germany

    Google Scholar 

  69. Muralikrishnan B, Ren W, Everett D, Stanfield E, Doiron T (2011) Dimensional metrology of bipolar fuel cell plates using laser spot triangulation probes. Meas Sci Technol 22:075102

    Article  Google Scholar 

  70. Kjaer KH, Ottose C-O (2015) 3D laser triangulation for plant phenotyping in challenging environments. Sensors 15:13533–13547

    Article  Google Scholar 

  71. Peiravi A, Taabbodi B (2010) A reliable 3D laser triangulation-based scanner with a new simple but accurate procedure for finding scanner parameters. J Am Sci 6:80

    Google Scholar 

  72. Clarke TA, Grattan KTV, Lindsey NE (1991) Laser-based triangulation techniques in optical inspection of industrial structures. Proc SPIE 1332:474–486

    Article  Google Scholar 

  73. MacKinnon D, Beraldin J-A, Cournoyer L, Picard M, Blais F (2012) Lateral resolution challenges for triangulation-based three-dimensional imaging systems. Opt Eng 51:021111

    Article  Google Scholar 

  74. Zeng L, Matsumoto H, Kawachi K (1997) Two-directional scanning method for reducing the shadow effects in laser triangulation. Measur Sci Technol 8:262–266

    Article  Google Scholar 

  75. Gorthi SS, Rastogi P (2010) Fringe projection techniques: whither we are? Opt Lasers Eng 48(2):133–140

    Article  Google Scholar 

  76. Leonhardt K, Droste U, Tiziani HJ (1994) Micro shape and rough-surface analysis by fringe projection. Appl Opt 33:7477–7488

    Article  Google Scholar 

  77. Quan C, Tay CJ, He XY, Kang X, Shang HM (2002) Microscopic surface contouring by fringe projection method. Opt Laser Technol 34(7):547–552

    Article  Google Scholar 

  78. Chen L-C, Liao C-C, Lai M-J (2005) Full-field micro surface profilometry using digital fringe projection with spatial encoding principle. J Phys: Conf Series 13:147–150

    Google Scholar 

  79. He X, Sun W, Zheng X, Nie M (2006) Static and dynamic deformation measurements of micro beams by the technique of digital image correlation. Key Eng Mater 326–328:211–214

    Article  Google Scholar 

  80. Chen L, Chang Y (2008) High accuracy confocal full-field 3-D surface profilometry for micro lenses using a digital fringe projection strategy. Key Eng Mater 364–366:113–116

    Google Scholar 

  81. Li A, Peng X, Yina Y, Liua X, Zhao Q, Körner K, Osten W (2013) Fringe projection based quantitative 3D microscopy. Optik 124:5052–5056

    Article  Google Scholar 

  82. Yin Y, Wang M, Gao BZ, Liu X, Peng X (2015) Fringe projection 3D microscopy with the general imaging model. Opt Express 23:6846

    Article  Google Scholar 

  83. Chen J, Guo T, Wang L, Wu Z, Fu X, Hu X (2013) Microscopic fringe projection system and measuring method. Proc SPIE 8759:87594U

    Article  Google Scholar 

  84. Drexler W, Fujimoto JG (eds) (2008) Optical coherence tomography: technology and applications. Springer, Berlin

    Google Scholar 

  85. Stifter D (2007) Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Appl Phys B 88:337–357

    Article  Google Scholar 

  86. Guan G, Hirsch M, Lu ZH, Childs DT, Matcher SJ, Goodridge R, Groom KM, Clare AT (2015) Evaluation of selective laser sintering processes by optical coherence tomography. J: Mater Design (accepted)

    Google Scholar 

  87. Wieser W, Biedermann BR, Klein T, Eigenwillig CM, Huber R (2010) Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt Express 18:14685–14704

    Article  Google Scholar 

  88. Czajkowski J, Vilmi P, Lauri J, Sliz R, Fabritius T, Myllylä R (2012) Characterization of ink-jet printed RGB color filters with spectral domain optical coherence tomography. Proc SPIE 8496:849308

    Article  Google Scholar 

  89. Thrane L, Jørgensen TM, Jørgensen M, Krebs FC (2012) Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells. Solar Energy Mater Solar Cells 97:181–185

    Article  Google Scholar 

  90. Su R, Kirillin M, Ekberg P, Mattsson L (2015) Three-dimensional metrology of embedded microfeatures in ceramics by infra-red optical coherence tomography—advantages and limitations. In: Proceedings of the 11th LAMDAMAP, March 2015. Swindon, UK, pp 74–83

    Google Scholar 

  91. Ahn Y, Jung W, Chen Z (2008) Optical sectioning for microfluidics: secondary flow and mixing in a meandering microchannel. Lab Chip 8:125–133

    Article  Google Scholar 

  92. Stifter D, Leiss-Holzinger E, Major Z, Baumann B, Pircher M, Götzinger E, Hitzenberger CK, Heise B (2010) Dynamic optical studies in materials testing with spectral-domain polarization-sensitive optical coherence tomography. Opt Express 18:25712–25725

    Article  Google Scholar 

  93. Dubois A, Grieve K, Moneron G, Lecaque R, Vabre L, Boccara C (2004) Ultrahigh-resolution full-field optical coherence tomography. Appl Opt 43:2874–2883

    Article  Google Scholar 

  94. Chen T, Zhang N, Huo T, Wang C, Zheng J, Zhou T, Xue P (2013) Tiny endoscopic optical coherence tomography probe driven by a miniaturized hollow ultrasonic motor. J Biomed Opt 18:086011

    Article  Google Scholar 

  95. Prylepa A, Duchoslav J, Keppert T, Luckeneder G, Stellnberger K-H, Stifter D (2013) Nonlinear imaging with interferometric SHG microscopy using a broadband 1550 nm fs-fiber laser. In: CLEO EUROPE/IQEC, Munich, Germany, May 2013, p 1

    Google Scholar 

  96. Su R, Kirillin M, Chang EW, Sergeeva E, Yun SH, Mattsson L (2014) Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics. Opt Express 22:15804–15819

    Article  Google Scholar 

  97. Schmitt JM, Xiang SH, Yung KM (1999) Speckle in optical coherence tomography. J Biomed Opt 4:95–105

    Article  Google Scholar 

  98. Hitzenberger CK, Baumgartner A, Fercher AF (1998) Dispersion in-duced multiple signal peak splitting in partial coherence interferometry. Opt Commun 154:179–185

    Article  Google Scholar 

  99. Su R, Ekberg P, Leitner M, Mattsson L (2014) Accurate and automated image segmentation of 3D optical coherence tomography data suffering from low signal-to-noise levels. J Opt Soc Am A 31:2551–2560

    Article  Google Scholar 

  100. Chiffre LD, Carmignato S, Kruth J-P, Schmit R, Wecken-mann A (2014) Industrial applications of computed tomography. Ann CIRP 63:655–677

    Article  Google Scholar 

  101. Kruth JP, Bartscher M, Carmignato S, Schmitt R, Chiffre LD, Weckenmannf A (2011) Computed tomography for dimensional metrology. Ann CIRP 60:821–842

    Article  Google Scholar 

  102. Hsieh J (2009) Computed tomography: principles, design, artifacts, and recent advances, 2nd edn. SPIE Press, Bellingham

    Google Scholar 

  103. Boone JM (2000) X-ray production, interaction, and detection in diagnostic imaging. In: Beutel J, Kundel HL, Van Metter RL (eds) Handbook of medical imaging, physics and psychophysics. SPIE Press, Bellingham, pp 1–78

    Google Scholar 

  104. Requena G, Cloetens P, Altendorfer W, Poletti C, Tolnai D, Warchomickaa F, Degischera HP (2009) Sub-micrometer synchrotron tomography of multiphase metals using Kirkpatrick-Baez optics. Scripta Mater 61:760–763

    Article  Google Scholar 

  105. Yaffe MJ, Rowlands JA (1997) X-ray detectors for digital radiography. Phys Med Biol 42:1–39

    Article  Google Scholar 

  106. Smith BD (1990) Cone-beam tomography: recent advances and a tutorial review. Opt Eng 29:524–534

    Article  Google Scholar 

  107. Ferrucci M, Leach RK, Giusca C, Carmignato S, Dewulf W (2015) Towards geometrical calibration of x-ray computed tomography systems—a review. Meas Sci Technol 26:092003

    Article  Google Scholar 

  108. Flay N, Sun W, Brown S, Leach RK, Blumensat T (2015) Investigation of the focal spot drift in industrial cone-beam x-ray computed tomography. In: Proceedings of the DIR 2015, Ghent, Belgium, June 2015

    Google Scholar 

  109. Brooks RA, Di Chiro G (1976) Beam hardening in x-ray reconstructive tomography. Phys Med Biol 21:390–398

    Article  Google Scholar 

  110. Santiago P, Gage HD (1995) Statistical-models of partial volume effect. IEEE Trans Image Processing 4:1531–1540

    Article  Google Scholar 

  111. Schorner K, Goldammer M, Stephan J (2011) Comparison between beam-stop and beam-hole array scatter correction techniques for industrial X-ray cone-beam CT. Nucl Instrum Meth B 269:292–299

    Article  Google Scholar 

  112. Mail N, Moseley DJ, Siewerdsen JH, Jaffray DA (2008) An empirical method for lag correction in cone-beam CT. Med Phys 35:5187–5196

    Article  Google Scholar 

  113. Carmignato S, Pierobon A, Savio E (2011) First international intercomparison of computed tomography systems for dimensional metrology. In: Proceedings of the 11th Euspen international conference, Como, Italy, May 2011. pp 84–87

    Google Scholar 

  114. Dewulf W, Kiekens K, Tan Y, Welkenhuyzen F, Kruth J-P (2013) Uncertainty determination and quantification for dimensional measurements with industrial computed tomography. Ann CIRP 62:535–538

    Article  Google Scholar 

  115. Hiller J, Maisl M, Reindl LM (2012) Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications. Measur Sci Technol 23:085404

    Article  Google Scholar 

  116. Hsieh J, Chao E, Thibault J, Grekowicz B, Horst A, McOlash S, Myers TJ (2004) A novel reconstruction algorithm to extend the CT scan field-of-view. Med Phys 31:2385–2391

    Article  Google Scholar 

  117. Krämer P, Weckenmann A (2010) Multi-energy image stack fusion in computed tomography. Measur Sci Technol 21:045105

    Article  Google Scholar 

  118. Fitzgerald R (2007) Phase-sensitive x-ray imaging. Phys Today 53:23–26

    Article  Google Scholar 

  119. Flay N, Leach RK (2012) Application of the optical transfer function in x-ray computed tomography—a review. NPL Report ENG 41

    Google Scholar 

  120. Landis EN, Keane DT (2010) X-ray microtomography. Mater Charact 61:1305–1316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samanta Piano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Piano, S., Su, R., Leach, R. (2017). Micro-scale Geometry Measurement. In: Fassi, I., Shipley, D. (eds) Micro-Manufacturing Technologies and Their Applications. Springer Tracts in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-39651-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39651-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39650-7

  • Online ISBN: 978-3-319-39651-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics