Skip to main content

Mesopotamian Mathematics, Seen “from the Inside” (by Assyriologists) and “from the Outside” (by Historians of Mathematics)

  • Conference paper
  • First Online:
  • 1002 Accesses

Part of the book series: Trends in the History of Science ((TRENDSHISTORYSCIENCE))

Abstract

Since the 1950s, “Babylonian mathematics” has often served to open expositions of the general history of mathematics. Since it is written in a language and a script which only specialists understand, it has always been dealt with differently by the “insiders”, the Assyriologists who approached the texts where it manifests itself as philologists and historians of Mesopotamian culture, and by “outsiders”, historians of mathematics who had to rely on second-hand understanding of the material (actually, of as much of this material as they wanted to take into account), but who saw it as a constituent of the history of mathematics. The article deals with how these different approaches have looked in various periods: pre-decipherment speculations; the early period of deciphering, 1847–1929; the “golden decade”, 1929–1938, where workers with double competence (primarily Neugebauer and Thureau-Dangin ) attacked the corpus and demonstrated the Babylonians to have possessed unexpectedly sophisticated mathematical knowledge; and the ensuing four decades, where some mopping-up without change of perspective was all that was done by a handful of Assyriologists and Assyriologically competent historians of mathematics, while most Assyriologists lost interest completely, and historians of mathematics believed to possess the definitive truth about the topic in Neugebauer ’s popularizations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A conceptual clarification: The “Near East” encompasses Egypt, the Palestino-Syrian area, Arabia and Mesopotamia—sometimes other neighbouring areas are included as well. Mesopotamia largely coincides with present-day Iraq. Its northern third is Assyria, and the remainder is Babylonia. Chaldea strictly speaking is the southern third (in the third millennium bce Sumer), but often in the quotations that follow it stands for the whole of Babylonia.

  2. 2.

    My translation, as everywhere below where nothing else is stated. All translated quotations can be found in original language in the preprint version of the article, on http://rudar.ruc.dk//bitstream/1800/10613/1/Hoyrup_2013_c_Mesopotamian_mathematics_from_the_inside_and_from_the_outside_S.pdf. In cases where the titles of publications have been translated, the genuine titles can be found in the bibliography. The notes to the quotation are due to Montucla, my additions are in square brackets. Similarly below for notes within quotations.

  3. 3.

    Geograph.lib.xvii.

  4. 4.

    Cedrenus [an 11th-century Byzantine historian].

  5. 5.

    Diog. Laer. in proemio. [Hicks 1925: I, 12].

  6. 6.

    In Phædro. p. 1240 ed. 1602. [274c].

  7. 7.

    Ibid.

  8. 8.

    [At this point, the astronomer Joseph-Jérôme Lalande (1732–1807) adds the following in the second edition—the earliest reasoned reference to Babylonian mathematics (Montucla 1799: I, 43f): “It is even quite difficult not to affiliate them with the Chaldeans. They, indeed, present us with the first traces of astronomical knowledge, very advanced at that. How would they, without that tool, have been able to discover several astronomical periods, knowledge of which has come down to us!” Apart from that, Montucla ’s passage is unchanged].

  9. 9.

    Ant. Jud. liv. i c. 9. [Actually chapter 8].

  10. 10.

    Abraham is at least absent from Giuseppe Biancani ’s (1566–1624) Clarorum mathematicorum chronologia (1615, 39), and also from Gerardus Vossius’s (1577–1649) De universae mathesios natura et constitutione liber and Chronologia mathematicorum (1650), while Polydorus Vergilius (c. 1470–1555) (1546, 59f) has no chapter reference. Since Montucla does not abstain from identifying Ramus by name when chiding him for following “the inclination of the mob toward everything that seems marvellous” (p. 450), the present reference is most likely at least not to be to Ramus alone.

  11. 11.

    What follows about work done before 1860 is drawn, when no original sources are referred to, from Charles Fossey ’s (1869–1946) very detailed exposition of (good and bad) arguments and results (Fossey 1904, 85–220).

  12. 12.

    Grotefend (1802) was published only in full in (Meyer 1893), for which reason I build on Fossey ’s account (1904, 102–111) of the arguments that circulated.

  13. 13.

    This system is sexagesimal but not positional until 100, after which it is combined with word-signs for 100 and 1000.

  14. 14.

    Archibald Henry Sayce (1845–1933), when returning to the text in (1875, 490; cf. Sayce 1887, 337–340), reinterprets the topic as a table of lunar longitudes. Geometrically, the two interpretations are equivalent, but the final verb of the lines (DU, “to go”) suggested this new understanding.

  15. 15.

    In contrast, the just published Blackwell Encyclopedia of Ancient History planned the same number of pages for Mesopotamian mathematics and Mesopotamian hairstyles. It should be added that those who planned the volume had little idea about Mesopotamia (nor were they very interested in receiving advice, however).

  16. 16.

    We may see this belief as the last scholarly and pseudo-scholarly survivor of the Renaissance faith in ancient prisca sapientia. Paradoxically, Oppert had pointed out already in (1886, 90) that there were “in Assyria and Chaldea, as everywhere else, ceaseless variations in the measures”, which should have warned him against the dangers inherent in the comparative method.

  17. 17.

    See for example p. 427f on the postulated unit “hair”, which leads him to rather far-fetched hypotheses (presented “with all reserve”, it is true).

  18. 18.

    Basing himself on indirect evidence and on Greek writings, Johannes Brandis (1830–1873) had already claimed that the unending sexagesimal fraction system of the Greek astronomers had to be of Chaldean origin “even if we never find direct or indirect testimony ascribing it to them” (Brandis 1866, 18).

  19. 19.

    Hilprecht quotes this passage from Carl Bezold’s (1859–1922) “concise survey of the Babylonian-Assyrian literature” (Bezold 1886, 225): “As far as we know by now, Babylonian-Assyrian mathematics primarily served astronomy, and this on its part a pseudo-science, astrology, which probably arose in Mesopotamia, propagated from there into the Gnostic writings, and was inherited by the Middle Ages, although we are not yet able to reconstruct this whole chain, the links of which are often broken from each other”.

  20. 20.

    Outside Assyriology, in particular among natural scientists taking interest in Antiquity and its mysteries, the comparativist trend is still alive and kicking—see (Berriman 1953; Rottländer 2006; Lelgemann 2004).

  21. 21.

    [A footnote refers to Moritz Cantor ’s Vorlesungen I, on which below.].

  22. 22.

    Now known as BM 85194 and BM 85210.

  23. 23.

    Only the terms for (what can approximately be translated as) square and cube roots were known since Moritz Cantor ’s use of Hilprecht ’s material in (1908). Quite a few of Weidner ’s readings later turned out to be philologically wrong while their technical interpretation was adequate. What was correct, however, was important later on, and some of the philological errors were still taken over in Neugebauer ’s early interpretations without great damage.

  24. 24.

    Already Cantor ’s “mathematical contributions to the cultural life of the nations” had contained a chapter on the Babylonians (Cantor 1863, 22–38). At the time, however, he had only been able to speak about the decipherment; about “Oriental” culture in general; and about the writing system, about integer numerals and about the possible use of some kind of abacus (a hypothesis which he repeats in the Vorlesungen).

  25. 25.

    The exceptions are vols 2, 16, 19–20 and 25, to which I have no access; there is no reason to believe they should change the general picture.

  26. 26.

    Some stylistic features do point to Neugebauer as the writer. As revealed by the quotation in note 41, at least Toeplitz also had an attitude in conflict with the present text.

  27. 27.

    “Moreover, even the readings themselves can be considerably improved, once the substantial contents has been elucidated” (p. 67).

  28. 28.

    [The quotes around the word algebraic indicate that Neugebauer refuses to make hypotheses about which kind of algebraic thought is involved in the texts. The many algebraic formulas in his commentary are not meant to map the thinking of the authors of the texts; they show why the calculations are pertinent (or, rarely, why they are not)].

  29. 29.

    This booklet had no strong impact—it drowned in the fury surrounding the new discoveries of the time. However, a revised English translation (including much about the Babylonian “algebra”) appeared in Osiris in (1939) on George Sarton’s initiative (p. 99).

  30. 30.

    This is what von Soden (1939, 144) tells about the purpose of this parallel edition: “This new work is not meant to replace Neugebauer ’s MKT; indeed, the phototypes and autographs are not repeated, nor are all texts treated anew. Th.-D.s aim was instead, leaving the arithmetical tables completely aside (only the introduction speaks briefly about them) to make those problem texts that are sufficiently well preserved to allow at least a generally satisfying understanding available to as many researchers as possible in a cheaper edition, since the exorbitant price of the MKT unfortunately hampers its wider diffusion.” But further: “While thus the specialist researcher will also in future not be able to give up Neugebauer ’s MKT as the complete source collection, with the just mentioned exception [two small texts from Susa with area calculations published by Vincent Scheil in 1938], then precisely he will also not be able to pass over Th.-D.’s new edition, as nobody will be able to digest in brief the large number of corrected readings and the immensely weighty lexical, grammatical and substantial observations, masterly concise though they are.” In Thureau-Dangin ’s own words (TMB, xl): “The present volume contains no text which has not been published elsewhere in its original form [that is, without a translation of ideograms into syllabic Akkadian]. The main task I have set myself while preparing it has been to make documents accessible to the historians of mathematical thought.”.

  31. 31.

    Curiously enough, (Neugebauer and Sachs 1945) is much less afraid of ascribing modern mathematical concepts to the Babylonians than Neugebauer had been in the 1930s—such as logarithms, p. 35, cf. (Neugebauer (19351937), I, 363–365). Whether this is due to Sachs ’s influence or Neugebauer himself had been convinced by what others had read into (Neugebauer 19351937) I am unable to say.

  32. 32.

    The edition of one long Seleucid text (BM 34568) in (Neugebauer 19351937, III, 14–22) is also, according to Neugebauer , “apart from a few trifles due to Herrn Dr. Waschow ”. This work must be dated between 1935 and 1937.

  33. 33.

    He returns to this link time and again in the numerous angry letters I have from his hand. I suppose he can be believed on this account, his general unreliability notwithstanding. According to the preface (TMS, xi), Rutten made the hand copies and collaborated with Bruins on the translation. However, already the translation of word signs into Akkadian contains so many blunders of a kind no competent Assyriologist would commit that Bruins can be clearly seen to have had the upper hand concerning everything apart from the hand copies.

  34. 34.

    A further text covering three tablets was found on the ground, apparently left behind by illegal diggers as too damaged. It was published by Albrecht Goetze (1897–1971) in (1951).

  35. 35.

    Until then, von Soden had never worked directly on mathematical questions himself; but he had always been interested in the topic, as can be seen from his careful and extensive reviews of Neugebauer 1935–1937 (1937) and TMB (1939). He also made a review of TMS in (1964), an indispensable companion piece to the edition itself.

  36. 36.

    The outcome can be seen as an extension of a division of the corpus into a “northern” and a “southern” group which Neugebauer had suggested in (1932, 6f); but Neugebauer ’s arguments had been of a wholly different nature.

  37. 37.

    In 1978–79, Carlo Zaccagnini thus published at least four papers on the metrologies of peripheral areas.

    I disregard publications in Russian, most noteworthy of which is (Vajman 1961)—my reading of Russian, which reached the level of “rudimentary” 25 years ago, has vanished completely since then for lack of practice. An exhaustive survey, often with discussion, of all at least minimally pertinent publications (also those in Russian) for the period 1945–1980 will be found in (Friberg 1982, 67–130).

  38. 38.

    “Of the creators of Babylonian mathematics we know nothing whatsoever except the result of their work” (p. 6). That the texts are school texts is intimated by photos of presumed schoolrooms from Mari (which are actually store-rooms) and occasional references to a “schoolboy”—but schooling seems to be just as timeless as mathematics. In 1964, we may observe, more was known about the Old Babylonian scribe school than in 1934—cf. (Kramer 1949; Falkenstein 1953; Gadd 1956).

  39. 39.

    However, all of this is described in (Thureau-Dangin 1939), who distinguishes the “abstract” (namely place-value) system “intended only to serve as an instrument of calculation” (p. 117) from the ordinary sexagesimal but non-positional system.

  40. 40.

    “It should be added that an entirely consistent use of the sexagesimal system is to be found only in the mathematical and astronomical texts, and even in astronomical texts one can find year numbers written as, e.g., 1–me 15 (meaning 1 hundred 15) instead of 155. In practical life the Babylonians showed the same profound disregard for rationality in their use of units for weight and measure as does the modern English-speaking world” (p. 20). The year number in question is written in precisely that number system which Hincks had deciphered in 1847, cf. note 13—the very first contribution to the study of Assyro-Babylonian mathematics.

  41. 41.

    “Nothing is farther from me than to teach a history of the infinitesimal calculus; I myself as a student ran away from a lecture of that kind. History is not at stake, but the genesis of problems, acts and demonstrations, and the decisive turning points in this genesis” (Toeplitz 1927, 94).

  42. 42.

    Dirk Struik’s (1894–2000) Concise History of Mathematics from (1948) deals with Mesopotamian mathematics too briefly to allow description in similar depth (pp. 23–32). Struik’s layout, however, is similar: The analysis is embedded in general social history; non-positional as well as place-value system are described; but like Vogel , Struik has no possibility to go beyond Neugebauer .

  43. 43.

    Boyer had written about the “concepts of the calculus” (1949), and Kline ’s title refers to “mathematical thought”. Hofmann had written among other things about Ramon Lull’s squaring of the circle in (1942), and had tried there to penetrate the thinking and motives of Lull (without which he would indeed have been unable to conclude anything of interest).

References

  • Aaboe, A. (1964). Episodes from the early history of mathematics. New York: Random House.

    MATH  Google Scholar 

  • Baqir, T. (1950a). An important mathematical problem text from Tell Harmal. Sumer, 6, 39–54.

    MathSciNet  Google Scholar 

  • Baqir, T. (1950b). Another important mathematical text from Tell Harmal. Sumer, 6, 130–148.

    MathSciNet  Google Scholar 

  • Baqir, T. (1951). Some more mathematical texts from Tell Harmal. Sumer, 7, 28–45.

    Google Scholar 

  • Baqir, T. (1962). Tell Dhiba’i: New mathematical texts. Sumer, 18, 11–14, pl. 1–3.

    Google Scholar 

  • Berriman, A. E. (1953). Historical metrology: A new analysis of the archaeological and the historical evidence relating to weights and measures. London: Dent, New York: Dutton.

    Google Scholar 

  • Bezold, C. (1886). Kurzgefasster Überblick über die babylonisch-assyrische Literatur. Leipzig: Otto Schulze.

    Google Scholar 

  • Biancani, G. S. J. (1615). De mathematicarum natura dissertatio. Una cum clarorum mathematicorum chronologia. Bologna: Bartholomeo Cocchi.

    Google Scholar 

  • Boyer, C. B. (1949). The concepts of the calculus: A critical and historical discussion of the derivative and the integral. New York: Columbia University Press.

    MATH  Google Scholar 

  • Boyer, C. B. (1968). A history of mathematics. New York: Wiley.

    MATH  Google Scholar 

  • Brandis, J. (1866). Das Münz-, Mass- und Gewichtswesen in Vorderasien bis auf Alexander den Großen. Berlin: Wilhelm Herz.

    Google Scholar 

  • Bruins, E. M., & Rutten, M. (1930). Textes mathématiques de Suse. TMS. Paris: Paul Geuthner.

    Google Scholar 

  • Bruins, E. M. (1953). Revision of the mathematical texts from Tell Harmal. Sumer, 9, 241–253.

    Google Scholar 

  • Bruins, E. M. (1957). Pythagorean triads in Babylonian mathematics. The Mathematical Gazette, 41, 25–28.

    Google Scholar 

  • Bruins, E. M., & Rutten, M. (1961). Textes mathématiques de Suse. Paris: Paul Geuthner.

    Google Scholar 

  • Cantor, M. (1863). Mathematische Beiträge zum Kulturleben der Völker. Halle: H. W. Schmidt.

    Google Scholar 

  • Cantor, M. (1880). Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Leipzig: Teubner.

    Google Scholar 

  • Cantor, M. (1907). Vorlesungen über Geschichte der Mathematik. Erster Band, von den ältesten Zeiten bis zum Jahre 1200 n. Chr. Dritte Auflage. Leipzig: Teubner.

    MATH  Google Scholar 

  • Cantor, M. (1908). Babylonische Quadratwurzeln und Kubikwurzeln. Zeitschrift für Assyriologie und verwandte Gebiete, 21, 110–114.

    Google Scholar 

  • Cory, I. P. (1832). Ancient fragments of the Phoenician, Chaldæan, Egyptian, Tyrian, Carthaginian, Indian, Persian, and other writers (2nd ed.). London: William Pickering.

    Google Scholar 

  • Damerow, P., & Englund, R. K. (1987). Die Zahlzeichensysteme der Archaischen Texte aus Uruk. In M. W. Green & H. J. Nissen (Eds.), Zeichenliste der Archaischen Texte aus Uruk (Band II, Kapitel 3). Berlin: Gebr. Mann.

    Google Scholar 

  • Daniels, P. T. (1988). ‘Shewing of hard sentences and dissolving of doubts’: The first decipherment. Journal of the American Oriental Society, 108, 419–436.

    Article  Google Scholar 

  • Falkenstein, A. (1953). Die babylonische Schule. Saeculum, 4, 125–137.

    Article  MATH  Google Scholar 

  • Fossey, C. (1904). Manuel d’assyriologie. Tôme premier. Explorations et fouilles, déchiffrement des cunéiformes, origine et histoire de l’écriture. Paris: Leroux.

    Google Scholar 

  • Frank, C. (1928). Straßburger Keilschrifttexte in sumerischer und babylonischer Sprache. Berlin & Leipzig: Walter de Gruyter.

    MATH  Google Scholar 

  • Friberg, J. (1978). The third millennium roots of Babylonian mathematics. I. A method for the decipherment, through mathematical and metrological analysis, of proto-Sumerian and proto-Elamite semi-pictographic inscriptions. Department of Mathematics, Chalmers University of Technology and the University of Göteborg No. 1978-9.

    Google Scholar 

  • Friberg, J. (1979). The early roots of Babylonian mathematics. II: Metrological relations in a group of semi-pictographic tablets of the Jemdet Nasr type, probably from Uruk-Warka. Department of Mathematics, Chalmers University of Technology and the University of Göteborg No. 1979-15.

    Google Scholar 

  • Friberg, J. (1981). Methods and traditions of Babylonian mathematics. Plimpton 322, Pythagorean triples, and the Babylonian triangle parameter equations. Historia Mathematica, 8, 277–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Friberg, J. (1982). A survey of publications on Sumero-Akkadian mathematics, metrology and related matters (1854–1982). Department of Mathematics, Chalmers University of Technology and the University of Göteborg No. 1982-17.

    Google Scholar 

  • Gadd, C. J. (1922). Forms and colours. Revue d’Assyriologie, 19, 149–159.

    Google Scholar 

  • Gadd, C. J. (1956). Teachers and students in the oldest schools. An inaugural lecture delivered on 6 March 1956. London: School of Oriental and African Studies, University of London.

    Google Scholar 

  • Gandz, S. (1948). Studies in Babylonian mathematics I. Indeterminate Analysis in Babylonian Mathematics. Osiris, 8, 12–40.

    MathSciNet  MATH  Google Scholar 

  • Grotefend, G. F. (1802). Bericht über “Praevia de cuneatis, quas vocant, inscriptionibus Persepolitanis legendis et explicandis relatio”. Göttingische gelehrte Anzeigen, 18. September 1802, 1481–1487; 6. November 1802, 1769–1772; 14. April 1803, 593–595; 23. Juli 1803, 1161–1164.

    Google Scholar 

  • Gundlach, K.-B., & von Soden, W. (1963). Einige altbabylonische Texte zur Lösung »quadratischer Gleichungen«. Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, 26, 248–263.

    Article  MathSciNet  Google Scholar 

  • Hankel, H. (1874). Zur Geschichte der Mathematik in Alterthum und Mittelalter. Leipzig: Teubner.

    MATH  Google Scholar 

  • Heuzey, L. (1906). À la mémoire de Jules Oppert. Revue d’Assyriologie, 6(1904–07), 73–74.

    Google Scholar 

  • Hicks, R. D. (Ed., Trans.). (1925). Diogenes Laertius, Lives of eminent philosophers (Vol. 2). London: Heinemann/New York: Putnam.

    Google Scholar 

  • Hilprecht, H. V. (1906). Mathematical, metrological and chronological tablets from the temple library of Nippur. Philadelphia: Department of Archaeology, University of Pennsylvania.

    Google Scholar 

  • Hincks, E. (1848). On the third Persepolitan writing, and on the mode of expressing numerals in cuneatic characters. Transactions of the Royal Irish Academy. Polite Literature, 21, 249–256.

    Google Scholar 

  • Hincks, E. (1854a). Cuneiform inscriptions in the British Museum. Journal of Sacred Literature, New Series, 13(October 1854), 231–234. Reprint after The Literary Gazette, 38, 707.

    Google Scholar 

  • Hincks, E. (1854b). On the Asssyrian mythology. Transactions of the Royal Irish Academy, 22(6), 405–422.

    Google Scholar 

  • Hofmann, J. E. (Ed.). (1942). Ramon Lulls Kreisquadratur; Raimundus Lullus, De quadratura et triangulaturo circuli. Sitzungsberichte der Heidelberger Akademie der Wissenschaften: Philosophisch-historische Klasse 1941/42 Nr. 4.

    Google Scholar 

  • Hofmann, J. E. (1953–1957). Geschichte der Mathematik (Vol. 3). Berlin: Walter de Gruyter.

    Google Scholar 

  • Hommel, F. (1885). Geschichte Babyloniens und Assyriens. Berlin: Grote’sche Verlagsbuchhandlung.

    Google Scholar 

  • Høyrup, J. (2002). Lengths, widths, surfaces: A portrait of Old Babylonian algebra and its kin. New York: Springer.

    Book  MATH  Google Scholar 

  • Høyrup, J. (2010). Old Babylonian ‘Algebra’, and what it teaches us about possible kinds of mathematics. Gaņita Bhāratī 32, (published 2012), 87–110.

    Google Scholar 

  • Huber, P. (1955). Zu einem mathematischen Keilschrifttext (VAT 8512). Isis, 46, 104–106.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaritz, K. (1993). Ernst Weidner—Gelehrter und Mensch. In H. D. Galter (Ed.), Grazer Morgenländische Studien. Band 3: Die Rolle der Astronomie in den Kulturen Mesopotamiens (pp. 11–20). Graz: Universität Graz.

    Google Scholar 

  • Kästner, A. G. (1796–1800). Geschichte der Mathematik seit der Wiederherstellung der Wissenschaften bis an das Ende des achtzehnten Jahrhunderts (Vol. 4). Göttingen: Johann Georg Rosenbusch.

    Google Scholar 

  • Kline, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.

    MATH  Google Scholar 

  • Kramer, S. N. (1949). Schooldays: A sumerian composition relating to the education of a scribe. Journal of the American Oriental Society, 69, 199–215.

    Article  Google Scholar 

  • Kramer, S. N. (1963). The Sumerians: Their history, culture, and character. Chicago: Chicago University Press.

    Google Scholar 

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Lelgemann, D. (2004). Recovery of the ancient system of foot/cubit/stadion-length units. Contribution, Workshop—History of Surveying and Measurement, Athens, May 22–24, 2004. http://www.fig.net/pub/athens/papers/wshs2/WSHS2_1_Lelgemann.pdf. Accessed May 31, 2011.

  • Meyer, W. (1893). G. Fr. Grotefends erste Nachricht von seiner Entzifferung der Keilschrift. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, 13. September 1893, 573–616.

    Google Scholar 

  • Montucla, J. F. (1758). Histoire des mathematiques (Vol. 2). Paris: Jombert.

    Google Scholar 

  • Montucla, J. F. (1799). Histoire des mathématiques (Vol. 4) (III–IV achevés et publiés par Jérôme de la Lande). Paris: Henri Agasse, an VII—an X (1799–1802).

    Google Scholar 

  • Münter, F. (1802). Versuch über die keilformigen Inschriften zu Persepolis. København: C. G. Proft, 1802.

    Google Scholar 

  • Neugebauer, O. (1926). Die Grundlagen der ägyptischen Bruchrechnung. Berlin: Julius Springer.

    Book  MATH  Google Scholar 

  • Neugebauer, O. (1927). Zur Entstehung des Sexagesimalsystems. Abhandlungen der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, Neue Folge, 13(1).

    Google Scholar 

  • Neugebauer, O. (1929). Zur Geschichte der babylonischen Mathematik. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 1(1929–31), 67–80.

    Google Scholar 

  • Neugebauer, O. (1932). Studien zur Geschichte der antiken Algebra I. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 2(1932–33), 1–27.

    Google Scholar 

  • Neugebauer, O. (1934). Vorlesungen über Geschichte der antiken mathematischen Wissenschaften. I: Vorgriechische Mathematik. Berlin: Julius Springer.

    Google Scholar 

  • Neugebauer, O. (1935–1937). Mathematische Keilschrift-Texte (Vol. 3). Berlin: Julius Springer.

    Google Scholar 

  • Neugebauer, O. (1951). The exact sciences in antiquity. København: Munksgaard.

    MATH  Google Scholar 

  • Neugebauer, O., & Sachs, A. (1945). Mathematical cuneiform texts. New Haven, Connecticut: American Oriental Society.

    MATH  Google Scholar 

  • Neugebauer, O., Stenzel, J., & Toeplitz, O. (1929). Geleitwort. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 1(1929–31), 12.

    Google Scholar 

  • Neugebauer, O., & Struve, W. (1929). Über die Geometrie des Kreises in Babylonien. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 1(1929–31), 81–92.

    Google Scholar 

  • Niebuhr, C. (1774–1778). Reisebeschreibung nach Arabien und andern umliegenden Ländern (Vol. 2). København: Nicolaus Møller.

    Google Scholar 

  • Norris, E. (1856). On the Assyrian and Babylonian weights. Journal of the Royal Asiatic Society of Great Britain and Ireland, 16, 215–226.

    Article  Google Scholar 

  • Oppert, J. (1856). Schreiben an den Präsidenten der Hamburger Orientalisten-Versammlung und an Prof. Brockhaus. Zeitschrift der Deutschen Morgenländischen Gesellschaft, 10, 288–292.

    Google Scholar 

  • Oppert, J. (1859). Expédition scientifique en Mésopotamie exécutée par ordre du Gouvernement de 1851 à 1854. II. Déchiffrement des inscriptions cunéiformes. Paris: Imprimerie Impériale.

    Google Scholar 

  • Oppert, J. (1872). L’étalon des mesures assyriennes fixé par les textes cunéiformes. Journal asiatique, sixième série, 20(1872), 157–177; septième série, 4(1874), 417–486.

    Google Scholar 

  • Oppert, J. (1886). La notation des mesures de capacité dans les documents juridiques cunéiformes. Zeitschrift für Assyriologie, 1, 87–90.

    Google Scholar 

  • Planck, M. (1950). Scientific autobiography and other papers. London: Williams & Norgate.

    Google Scholar 

  • Powell, M. A. (1971). Sumerian numeration and metrology. Dissertation. University of Minnesota.

    Google Scholar 

  • Powell, M. A. (1972a). Sumerian area measures and the alleged decimal substratum. Zeitschrift für Assyriologie und Vorderasiatische Archäologie, 62(1972–73), 165–221.

    Google Scholar 

  • Powell, M. A. (1972b). The origin of the sexagesimal system: The interaction of language and writing. Visible Language, 6, 5–18.

    Google Scholar 

  • Powell, M. A. (1976). The antecedents of Old Babylonian place notation and the early history of Babylonian mathematics. Historia Mathematica, 3, 417–439.

    Google Scholar 

  • Ramus, P. (1569). Scholarum mathematicarum libri unus et triginta. Basel: Eusebius Episcopius.

    Google Scholar 

  • Rawlinson, H. (1855). Notes on the early history of Babylonia. Journal of the Royal Asiatic Society of Great Britain and Ireland, 15, 215–259.

    Article  Google Scholar 

  • Robson, E. (2001). Neither Sherlock Holmes nor Babylon: A reassessment of Plimpton 322. Historia Mathematica, 28, 167–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Rottländer, R. C. A. (2006). Vormetrische Längeneinheiten. http://Vormetrische-laengeneinheiten.de. Accessed May 23, 2011.

  • Sayce, A. H. (1875). The astronomy of the Babylonians. Nature, 12, 489–491.

    Article  Google Scholar 

  • Sayce, A. H. (1887). Miscellaneous notes. Zeitschrift für Assyriologie, 2, 331–340.

    Google Scholar 

  • Schuster, H. S. (1930). Quadratische Gleichungen der Seleukidenzeit aus Uruk. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 1(1929–31), 194–200.

    Google Scholar 

  • Smith, G. (1872). On Assyrian weights and measures. Zeitschrift für Ägyptische Sprache und Altertumskunde, 10, 109–112.

    Google Scholar 

  • Strassmaier, J. N., & Epping, J. (1881). Zur Entzifferung der astronomischen Tafeln der Chaldäer. Stimmen aus Maria-Laach. Katholische Blätter, 21, 277–292.

    Google Scholar 

  • Struik, D. J. (1948). A concise history of mathematics (Vol. 2). New York: Dover.

    Google Scholar 

  • Thureau-Dangin, F. (1897). Un cadastre chaldéen. Revue d’Assyriologie, 4(1897–98), 13–27.

    Google Scholar 

  • Thureau-Dangin, F. (1931). Notes sur la terminologie des textes mathématiques. Revue d’Assyriologie, 28, 195–198.

    Google Scholar 

  • Thureau-Dangin, F. (1932a). Notes assyriologiques. LXIV. Encore un mot sur la mesure du segment de cercle. LXV. BAL = «raison (arithmétique ou géométrique)». LXVI. Warâdu «abaisser un perpendiculaire»; elû «élever un perpendiculaire». LXVII. La mesure du volume d’un tronc de pyramide”. Revue d’Assyriologie, 29, 77–88.

    Google Scholar 

  • Thureau-Dangin, F. (1932b). La ville ennemi de Marduk. Revue d’Assyriologie, 29, 109–119.

    MATH  Google Scholar 

  • Thureau-Dangin, F. (1932c). Esquisse d’une histoire du système sexagésimal. Paris: Geuthner.

    MATH  Google Scholar 

  • Thureau-Dangin, F. (1934). Une nouvelle tablette mathématique de Warka. Revue d’Assyriologie, 31, 61–69.

    MATH  Google Scholar 

  • Thureau-Dangin, F. (1936). L’Équation du deuxième degré dans la mathématique babylonienne d’après une tablette inédite du British Museum. Revue d’Assyriologie, 33, 27–48.

    MATH  Google Scholar 

  • Thureau-Dangin, F. (1938a). La méthode de fausse position et l’origine de l’algèbre. Revue d’Assyriologie, 35, 71–77.

    MATH  Google Scholar 

  • Thureau-Dangin, F. (1938b). Textes mathématiques Babyloniens. Leiden: Brill.

    Google Scholar 

  • Thureau-Dangin, F. (1939). Sketch of a history of the sexagesimal system. Osiris, 7, 95–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Toeplitz, O. (1927). Das Problem der Universitätsvorlesungen über Infinitesimalrechnung und ihrer Abgrenzung gegenüber der Infinitesimalrechnung an den höheren Schulen. Jahresbericht der deutschen Mathematiker-Vereinigung, 36, 88–100.

    MATH  Google Scholar 

  • Tropfke, J. (1902). Geschichte der Elementar-Mathematik in systematischer Darstellung. I. Rechnen und Algebra. II. Geometrie. Logarithmen. Ebene Trigonometrie. […]. Leipzig: von Veit.

    Google Scholar 

  • Ungnad, A. (1916). Zur babylonischen Mathematik. Orientalistische Literaturzeitung, 19, 363–368.

    Article  Google Scholar 

  • Ungnad, A. (1918). Lexikalisches. Zeitschrift für Assyriologie, 31(1917–18), 248–276.

    Google Scholar 

  • Vajman, A. A. (1961). Šumero-vavilonskaja matematika. III-I Tysjačeletija do n. e. Moskva: Izdatel’stvo Vostonoj Literatury.

    Google Scholar 

  • Vergilius, P. (1546). De rerum inventoribus libri octo. Lyon: Gryphius.

    Google Scholar 

  • Vogel, K. (1936). Beiträge zur griechischen Logistik. Erster Theil. Sitzungsberichte der mathematisch-naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München 1936, 357–472.

    Google Scholar 

  • Vogel, K. (1959). Vorgriechische Mathematik. II. Die Mathematik der Babylonier. Hannover: Hermann Schroedel/Paderborn: Ferdinand Schöningh.

    Google Scholar 

  • von Soden, W. (1937). [Review of Neugebauer 1935–1937]. Zeitschrift der Deutschen Morgenländischen Gesellschaft, 91, 185–203.

    Google Scholar 

  • von Soden, W. (1939). [Review of Thureau-Dangin 1938b]. Zeitschrift der Deutschen Morgenländischen Gesellschaft, 93, 143–152.

    Google Scholar 

  • von Soden, W. (1952). Zu den mathematischen Aufgabentexten vom Tell Harmal. Sumer, 8, 49–56.

    Google Scholar 

  • von Soden, W. (1964). [Review of Bruins & Rutten 1961]. Bibliotheca Orientalis, 21, 44–50.

    Google Scholar 

  • Vossius, G. I. (1650). De universae mathesios natura et constitutione liber, cui subjungitur Chronologia mathematicorum. Amsterdam: Ioannes Blaev.

    Google Scholar 

  • Waschow, H. (1932a). Verbesserungen zu den babylonischen Dreiecksaufgaben S.K.T. 8. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 2 (1931–32), 211–214.

    Google Scholar 

  • Waschow, H. (1932b). Reihen in der babylonischen Mathematik. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik. Abteilung B: Studien, 2(1932–33), 298–302.

    Google Scholar 

  • Waschow, H. (1932c). Angewandte Mathematik im alten Babylonien (um 2000 v. Chr.). Studien zu den Texten CT IX, 8–15. Archiv für Orientforschung, 8(1932–33), 127–131, 215–220.

    Google Scholar 

  • Waschow, H. (1936). Babylonische Briefe aus der Kassitenzeit. Inaugural-Dissertation. Gräfenhainichen: A. Heine.

    Google Scholar 

  • Weißbach, F. H. (1907). Über die babylonischen, assyrischen und altpersischen Gewichte. Zeitschrift der Deutschen Morgenländischen Gesellschaft, 61, 379–402, 948–950.

    Google Scholar 

  • Zeuthen, H. G. (1896). Geschichte der Mathematik im Altertum und im Mittelalter. Vorlesungen. København: Høst & Søn.

    Google Scholar 

  • Zimmern, H. (1916). Zu den altakkadischen geometrischen Berechnungsaufgaben. Orientalistische Literaturzeitung, 19, 321–325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Høyrup .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Høyrup, J. (2016). Mesopotamian Mathematics, Seen “from the Inside” (by Assyriologists) and “from the Outside” (by Historians of Mathematics). In: Remmert, V., Schneider, M., Kragh Sørensen, H. (eds) Historiography of Mathematics in the 19th and 20th Centuries. Trends in the History of Science. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-39649-1_4

Download citation

Publish with us

Policies and ethics