Hybridization as Cooperative Parallelism for the Quadratic Assignment Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9668)

Abstract

The Quadratic Assignment Problem is at the core of several real-life applications. Finding an optimal assignment is computationally very difficult, for many useful instances. The best results are obtained with hybrid heuristics, which result in complex solvers. We propose an alternate solution where hybridization is obtain by means of parallelism and cooperation between simple single-heuristic solvers. We present experimental evidence that this approach is very efficient and can effectively solve a wide variety of hard problems, often surpassing state-of-the-art systems.

Keywords

QAP Heuristics Parallelism Cooperation Hybridization Portfolio 

References

  1. 1.
    Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25(1), 53–76 (1957)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Commander, C.W.: A survey of the quadratic assignment problem, with applications. Morehead Electron. J. Appl. Math. 4, 1–15 (2005). MATH-2005-01Google Scholar
  3. 3.
    Bhati, R.K., Rasool, A.: Quadratic assignment problem and its relevance to the real world: a survey. Int. J. Comput. Appl. 96(9), 42–47 (2014)Google Scholar
  4. 4.
    James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 39(3), 579–596 (2009)CrossRefGoogle Scholar
  5. 5.
    Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignment problem. Appl. Math. Comput. 219(9), 4800–4815 (2013)MathSciNetMATHGoogle Scholar
  6. 6.
    Drezner, Z.: The extended concentric tabu for the quadratic assignment problem. Eur. J. Oper. Res. 160(2), 416–422 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    James, T., Rego, C., Glover, F.: A cooperative parallel tabu search algorithm for the quadratic assignment problem. Eur. J. Oper. Res. 195, 810–826 (2009)CrossRefMATHGoogle Scholar
  9. 9.
    Tosun, U.: On the performance of parallel hybrid algorithms for the solution of the quadratic assignment problem. Eng. Appl. Artif. Intell. 39, 267–278 (2015)CrossRefGoogle Scholar
  10. 10.
    Munera, D., Diaz, D., Abreu, S.: Solving the quadratic assignment problem with cooperative parallel extremal optimization. In: Chicano, F., et al. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 251–266. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30698-8_17 CrossRefGoogle Scholar
  11. 11.
    Munera, D., Diaz, D., Abreu, S., Codognet, P.: A parametric framework for cooperative parallel local search. In: Blum, C., Ochoa, G. (eds.) EvoCOP 2014. LNCS, vol. 8600, pp. 13–24. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible cooperation in parallel local search. In: Symposium on Applied Computing (SAC), pp. 1360–1361. ACM Press, New York (2014)Google Scholar
  13. 13.
    Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., Von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, pp. 519–538. ACM, San Diego (2005)Google Scholar
  14. 14.
    Saraswat, V., Tardieu, O., Grove, D., Cunningham, D., Takeuchi, M., Herta, B.: A Brief Introduction to X10 (for the High Performance Programmer). Technical report (2012)Google Scholar
  15. 15.
    Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Comput. 17(4–5), 443–455 (1991)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Burkard, R.E.: Quadratic assignment problems. In: Pardalos, P.M., Du, D.Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, 2nd edn, pp. 2741–2814. Springer, New York (2013)CrossRefGoogle Scholar
  17. 17.
    Loiola, E.M., de Abreu, N.M.M., Netto, P.O.B., Hahn, P., Querido, T.M.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Zaied, A.N.H., Shawky, L.A.E.F.: A survey of quadratic assignment problems. Int. J. Comput. Appl. 101(6), 28–36 (2014)Google Scholar
  19. 19.
    Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Said, G., Mahmoud, A.M., El-Horbaty, E.S.M.: A comparative study of meta-heuristic algorithms for solving quadratic assignment problem. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 5(1), 1–6 (2014)Google Scholar
  21. 21.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)CrossRefMATHGoogle Scholar
  22. 22.
    Taillard, É.D.: Comparison of iterative searches for the quadratic assignment problem. Location Sci. 3(2), 87–105 (1995)CrossRefMATHGoogle Scholar
  23. 23.
    Misevicius, A.: A tabu search algorithm for the quadratic assignment problem. Comput. Optim. Appl. 30(1), 95–111 (2005)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Boettcher, S., Percus, A.: Nature’s way of optimizing. Artif. Intell. 119(1–2), 275–286 (2000)CrossRefMATHGoogle Scholar
  25. 25.
    Boettcher, S., Percus, A.G.: Extremal optimization: an evolutionary local-search algorithm. In: Bhargava, H.K., Ye, N. (eds.) Computational Modeling and Problem Solving in the Networked World, vol. 21. Springer, New York (2003)CrossRefGoogle Scholar
  26. 26.
    Boettcher, S.: Extremal Optimization. In: Hartmann, A.K., Rieger, H. (eds.) New Optimization Algorithms to Physics, pp. 227–251. Wiley-VCH Verlag, Berlin (2004)Google Scholar
  27. 27.
    Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phy. Rev. Lett. 71(24), 4083–4086 (1993)CrossRefGoogle Scholar
  28. 28.
    Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, New York (2005)CrossRefMATHGoogle Scholar
  29. 29.
    Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)CrossRefMATHGoogle Scholar
  30. 30.
    Diaz, D., Abreu, S., Codognet, P.: Parallel constraint-based local search on the cell/be multicore architecture. In: Essaaidi, M., Malgeri, M., Badica, C. (eds.) Intelligent Distributed Computing IV. SCI, vol. 315, pp. 265–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Verhoeven, M., Aarts, E.: Parallel local search. J. Heuristics 1(1), 43–65 (1995)CrossRefMATHGoogle Scholar
  32. 32.
    Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale parallelism for constraint-based local search: the costas array case study. Constraints 20(1), 1–27 (2014)MATHGoogle Scholar
  33. 33.
    Toulouse, M., Crainic, T., Sansó, B.: Systemic behavior of cooperative search algorithms. Parallel Comput. 30, 57–79 (2004)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Talukdar, S., Baerentzen, L., Gove, A., De Souza, P.: Asynchronous teams: cooperation schemes for autonomous agents. J. Heuristics 4(4), 295–321Google Scholar
  35. 35.
    Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Palubeckis, G.: An algorithm for construction of test cases for the quadratic assignment problem. Informatica Lith. Acad. Sci. 11(3), 281–296 (2000)MathSciNetMATHGoogle Scholar
  37. 37.
    Wu, K.C., Ting, C.J., Gonzalez, L.C.: An ant colony optimization algorithm for quadratic assignment problem. In: Asia-Pacific Conference on Industrial Engineering and Management Systems (2011)Google Scholar
  38. 38.
    Drezner, Z., Hahn, P., Taillard, É.: Recent advances for the quadratic assignment problem with special emphasis on instances that are difficult for meta-heuristic methods. Ann. Oper. Res. 139(1), 65–94 (2005)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Acan, A., Ünveren, A.: A great deluge and tabu search hybrid with two-stage memory support for quadratic assignment problem. Appl. Soft Comput. 36(C), 185–203 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Paris 1-Sorbonne/CRIParisFrance
  2. 2.Universidade de Évora/LISPÉvoraPortugal

Personalised recommendations