Skip to main content

A Hybrid Approach to Decision Support for Resource-Constrained Scheduling Problems

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2016 (IDT 2016)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 56))

Included in the following conference series:

  • 644 Accesses

Abstract

Resource-constrained scheduling problems are commonly found in various areas, such as project management, manufacturing, transportation, software engineering, computer networks, and supply chain management. Its problem models involve a large number of constraints and discrete decision variables, including binary and integer. In effect, the representation of resource allocation, for instance, is often expressed using binary or integer decision variables to form several constraints according to the respective scheduling problem. It significantly increases the number of decision variables and constraints as the problem scales; such kind of traditional approaches based on operations research is insufficient. Therefore, a hybrid approach to decision support for resource-constrained scheduling problems which combines operation research (OR) and constraint logic programming (CLP) is proposed. Unlike OR-based approaches, declarative CLP provides a natural representation of different types of constraints. This approach provides: (a) decision support through the answers to the general and specific questions, (b) specification of the problem based on a set of facts and constraints, (c) reduction to the combinatorial solution space. To evaluate efficiency and applicability of the proposed hybrid approach and implementation platform, implementation examples of job-shop scheduling problem are presented separately for the three environments, i.e., Mathematical Programming (MP), CLP, and hybrid implementation platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  2. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

    MATH  Google Scholar 

  3. Apt, K., Wallace, M.: Constraint Logic Programming using Eclipse. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Milano, M., Wallace, M.: Integrating operations research. Constraint Program. Ann. Oper. Res. 175(1), 37–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Achterberg, T., Berthold, T., Koch, T.: Wolter K: Constraint integer programming, a new approach to integrate CP and MIP. Lect. Notes Comput. Sci. 5015, 6–20 (2008)

    Article  MATH  Google Scholar 

  6. Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic steady states space refinement: periodic processes scheduling. Int. J. Adv. Manuf. Technol. 67(1–4), 137–155 (2013)

    Article  Google Scholar 

  7. Sitek, P., Wikarek, J.: A Hybrid Approach to the Optimization of Multiechelon Systems. Mathematical Problems in Engineering, Article ID 925675, Hindawi Publishing Corporation, (2014). doi:10.1155/2014/925675

  8. Sitek, P., Nielsen I.E., Wikarek, J.: A Hybrid Multi-agent Approach to the Solving Supply Chain Problems. Procedia Computer Science KES, pp. 1557–1566 (2014)

    Google Scholar 

  9. Sitek, P., Wikarek J.: A hybrid framework for the modelling and optimisation of decision problems in sustainable supply chain management. Int. J. Prod. Res. 1–18 (2015). doi:10.1080/00207543.2015.1005762

    Google Scholar 

  10. Guyon, O., Lemaire, P., Pinson, Ă., Rivreau, D.: Solving an integrated job-shop problem with human resource constraints. Ann. Oper. Res. 213(1), 147–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource constraints: classification and complexity. Discret. Appl. Math. 5, 11–24 (1983)

    Google Scholar 

  12. Lawrence, S.R., Morton, T.E.: Resource-constrained multi-project scheduling with tardy costs: comparing myopic, bottleneck, and resource pricing heuristics. Eur. J. Oper. Res. 64(2), 168–187 (1993)

    Article  MATH  Google Scholar 

  13. Sitek, P.: A hybrid CP/MP approach to supply chain modelling, optimization and analysis. In: Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 2, pp. 1345–1352 (2014). doi:10.15439/2014F89

  14. Lindo Systems INC, LINDOâ„¢, www.lindo.com, Accessed Dec 4 (2015)

  15. Eclipse−The Eclipse Foundation open source community website, www.eclipse.org, Accessed Dec 4 (2015)

  16. Toth, P., Vigo, D.: Models, relaxations and exact approaches for the capacitated vehicle routing problem. Discret. Appl. Math. 123(1–3), 487–512 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coelho, J., Vanhoucke, M.: Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. Eur. J. Oper. Res. 213, 73–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Relich, M.: A computational intelligence approach to predicting new product success. In: Proceedings of the 11th International Conference on Strategic Management and its Support by Information Systems, pp. 142–150 (2015)

    Google Scholar 

  19. Wang, J., Liu, C.: Fuzzy Constraint Logic Programming with Answer Set Semantics. Lecture Notes in Computer Science, pp. 52–60 (2007). doi:10.1007/978-3-540-76719-0_9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Sitek .

Editor information

Editors and Affiliations

Appendix A Data Instances for Illustrative Example (Sets of Facts)

Appendix A Data Instances for Illustrative Example (Sets of Facts)

%machine (#M).

machine (M1). machine (M2). machine (M3). machine (M4).

machine (M5). machine (M6). machine (M7). machine (M8).

%product (#I).

product (A). product (B). product (C). product (D).

product (E). product (F). product (G).

%technology (#I,#M,C).

technology (A,M1,1). technology (A,M3,2). technology (A,M5,2).

technology (A,M7,3). technology (B,M2,2). technology (B,M3,2).

technology (B,M4,1). technology (C,M1,2) technology (C,M2,4).

technology (C,M3,2). technology (D,M5,2). technology (D,M6,2).

technology (D,M7,5). technology (D,M8,2). technology (E,M1,2).

technology (E,M2,1). technology (E,M3,2). technology (F,M4,2).

technology (F,M5,2). technology (F,M6,2). technology (G,M3,1).

technology (G,M5,2). technology (G,M8,2).

%resources (#R,L,K).

resources (R1,12,40). resources (R2,12,30).resources (R3,12,30).

resources (R4,12,20). resources (R5,12,20).

%allocation (#R,#M,#I,D)

allocation (O1,M1,A,2). allocation (O3,M3,A,2).

allocation (O1,M5,A,1). allocation (O4,M7,A,1).

allocation (O3,M2,B,2). allocation (O2,M3,B,1).

allocation (O4,M4,B,1). allocation (O3,M1,C,2).

allocation (O2,M2,C,1). allocation (O1,M3,C,2).

allocation (O1,M5,D,2). allocation (O2,M6,D,2).

allocation (O3,M7,D,1). allocation (O4,M8,D,1).

allocation (O2,M1,E,1). allocation (O5,M2,E,1).

allocation (O3,M3,E,2). allocation (O4,M4,F,2).

allocation (O5,M5,F,2). allocation (O1,M6,F,2).

allocation (O3,M3,G,1). allocation (O2,M5,G,2).

allocation (O1,M8,G,2).

%precedence (#P,#M,#M).

precedence (A,M1,M2). precedence (A,M2,M3).precedence (A,M3,M7).

precedence (B,M2,M3). precedence (B,M3,M4).precedence (C,M1,M2).

precedence (C,M2,M3). precedence (D,M5,M6).precedence (D,M6,M7).

precedence (D,M7,M8). precedence (E,M1,M2).precedence (E,M2,M3).

precedence (F,M4,M5). precedence (F,M5,M6).precedence (G,M3,M5).

precedence (G,M5,M8).

Order (#P,quantity).

order(A,2). order(B,2). order(C,1). order(D,1).

order(E,1). order(F,1). order(G,1).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sitek, P., Nielsen, I., Wikarek, J., Nielsen, P. (2016). A Hybrid Approach to Decision Support for Resource-Constrained Scheduling Problems. In: Czarnowski, I., Caballero, A., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies 2016. IDT 2016. Smart Innovation, Systems and Technologies, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-319-39630-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39630-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39629-3

  • Online ISBN: 978-3-319-39630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics