An Ontology Supporting Multiple-Criteria Decision Analysis Method Selection

  • Jarosław WątróbskiEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 56)


In the last few years multiple-criteria decision analysis methods (MCDA) have received more and more attention from researchers. Consequently, the new methods have made it possible to solve a lot of real-world decision problems in the areas of private lives, management practice or science. However, proper selection of a MCDA method reflecting a decision problem and a decision-maker’s preferences is a complex and important issue and inappropriate selection of a MCDA method may lead to generating improper recommendation. Therefore, this paper suggests using an ontology as a tool supporting multiple-criteria decision analysis method selection.


Multiple-criteria decision analysis MCDA ontology MCDA method selection 


  1. 1.
    Roy, B.: Paradigms and challenges. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis. State of the Art Surveys, pp. 3–24. Springer, Boston (2005)Google Scholar
  2. 2.
    Wang, X., Triantaphyllou, E.: Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega 36, 45–63 (2008)CrossRefGoogle Scholar
  3. 3.
    Peng, Y., Wang, G., Wang, H.: User preferences based software defect detection algorithms selection using MCDM. Inf. Sci. 191, 3–13 (2012)CrossRefGoogle Scholar
  4. 4.
    Wątróbski, J., Jankowski, J.: Knowledge management in MCDA domain. In: IEEE Proceedings of the Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 5, pp. 1445–1450 (2015)Google Scholar
  5. 5.
    Wątróbski, J., Jankowski, J.: An ontology-based knowledge representation of MCDA methods. In: ACIIDS 2016, Part I, LNAI 9621, pp. 245–255. Springer, Heidelberg (2016)Google Scholar
  6. 6.
    Ziemba, P., Wątróbski, J., Jankowski, J., Wolski, W.: Construction and restructuring of the knowledge repository of website evaluation methods. In: Ziemba, E. (ed.) Information Technology for Management, LNiBIP 243, pp. 29–52. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  7. 7.
    Hepp, M.: Ontologies: state of the art, business potential, and grand challenges. In: Hepp, M., de Leenheer, P., de Moor, A., Sure, Y. (eds.) Ontology Management. Semantic Web, Semantic Web Services, and Business Applications, pp. 2–23. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Guitouni, A., Martel, J.M.: Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109, 501–521 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hajkowicz, S., Higgins, A.: A comparison of multiple criteria analysis techniques for water resource management. Eur. J. Oper. Res. 184, 255–265 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jankowski, J.: Integration of collective knowledge in fuzzy models supporting web design process. In: Proceedings of the Third International Conference Computational Collective Intelligence Technologies and Applications, LNCS, vol. 6923, pp. 395–404 (2011)Google Scholar
  11. 11.
    Zanakis, S.H., Solomon, A., Wishart, N., Dublish, S.: Multi-attribute decision making: a simulation comparison of select methods. Eur. J. Oper. Res. 107, 501–521 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Chang, Y.H., Yeh, C.H., Chang, Y.W.: A new method selection approach for fuzzy group multicriteria decision making. Appl. Soft Comput. 13, 2179–2187 (2013)CrossRefGoogle Scholar
  13. 13.
    Al-Shemmeri, T., Al-Kloub, B., Pearman, A.: Model choice in multicriteria decision aid. Eur. J. Oper. Res. 97, 550–560 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Celik, M., Cicek, K., Cebi, S.: Establishing an international MBA program for shipping executives: managing OR/MS foundation towards a unique curriculum design. In: International Conference on Computers and Industrial Design (CIE), pp. 459–463 (2009)Google Scholar
  15. 15.
    Adil, M., Baptista Nunes, M., Peng, G.C.: Identifying operational requirements to select suitable decision models for a public sector e-procurement decision support system. JISTEM—J. Inf. Syst. Technol. Manag. 11, 211–228 (2014)Google Scholar
  16. 16.
    De Montis, A., De Toro, P., Droste-Franke, B., Omann, I., Stagl, S.: Assessing the quality of different MCDA methods. In: Getzner, M., Spash, C.L., Stagl, S. (eds.) Alternatives for Environmental Valuation, pp. 99–133. Routledge, London (2004)Google Scholar
  17. 17.
    Celik, M., Topcu, I.: Analytical modelling of shipping business processes based on MCDM methods. Marit. Policy Manag. 36, 469–479 (2009)CrossRefGoogle Scholar
  18. 18.
    Wątróbski, J., Jankowski, J.: Guideline for MCDA method selection in production management area. In: Różewski, P., Novikov, D., Bakhtadze, N., Zaikin, O. (eds.) New Frontiers in Information and Production Systems Modelling and Analysis. Intelligent Systems Reference Library, vol. 98, pp. 119–138. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  19. 19.
    Chai, J., Liu, J.N.K.: An Ontology-driven framework for supporting complex decision process. In: World Automation Congress (WAC) (2010)Google Scholar
  20. 20.
    Liao, X.Y., Rocha Loures, E., Canciglieri, O., Panetto, H.: A novel approach for ontological representation of analytic hierarchy process. Adv. Mater. Res. 988, 675–682 (2014)Google Scholar
  21. 21.
    Kornyshova, E., Deneckere, R.: Using an ontology for modeling decision-making knowledge. Frontiers Artif. Intell. Appl. 243, 1553–1562 (2012)Google Scholar
  22. 22.
    Kornyshova, E., Deneckere, R.: Decision-making ontology for information system engineering. LNCS, vol. 6412, pp. 104–117. Springer, Heidelberg (2010)Google Scholar
  23. 23.
    Wątróbski, J., Jankowski, J., Piotrowski, Z.: The selection of multicriteria method based on unstructured decision problem description. In: Computational Collective Intelligence, ICCCI 2014. LNAI, vol. 8733, pp. 454–465. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5, 199–220 (1993)CrossRefGoogle Scholar
  25. 25.
    Ziemba, P., Jankowski, J., Wątróbski, J., Piwowarski, M.: Web projects evaluation using the method of significant website assessment criteria detection. Trans. Comput. Collect. Intell. 22, 167–188 (2016)Google Scholar
  26. 26.
    Ziemba, P., Jankowski, J., Wątróbski, J., Becker, J.: Knowledge management in website quality evaluation domain. In: Nunez, M. et al. (eds.) Computational Collective Intelligence. ICCCI 2015, Part II. LNAI, vol. 9330, pp. 75–85. Springer, Heidelberg (2015)Google Scholar
  27. 27.
    Jankowski, J., Michalski, R., Bródka, P., Kazienko, P., Utz, S.: Knowledge acquisition from social platforms based on network distributions fitting. Comput. Hum. Behav. 51, 685–693 (2015)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Mikhailov, L.: Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega 30, 393–401 (2002)CrossRefGoogle Scholar
  30. 30.
    Shanian, A., Savadogo, O.: A material selection model based on the concept of multiple attribute decision making. Mater. Des. 27, 329–337 (2006)CrossRefGoogle Scholar
  31. 31.
    Marzouk, M.M.: ELECTRE III model for value engineering applications. Autom. Constr. 20, 596–600 (2011)CrossRefGoogle Scholar
  32. 32.
    Araz, C., Ozfirat, P.M., Ozkarahan, I.: An integrated multicriteria decision-making methodology for outsourcing management. Comput. Oper. Res. 34, 3738–3756 (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Madeira Junior, A.G., Cardoso Junior, M.M., Neyra Belderrain, M.C., Correia, A.R., Schwanz, S.H.: Multicriteria and multivariate analysis for port performance evaluation. Int. J. Prod. Econ. 140, 450–456 (2012)Google Scholar
  34. 34.
    Shanian, A., Savadogo, O.: A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Syst. Appl. 36, 1362–1370 (2009)CrossRefGoogle Scholar
  35. 35.
    Ozcan, T., Celebi, N., Esnaf, S.: Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst. Appl. 38, 9773–9779 (2011)CrossRefGoogle Scholar
  36. 36.
    Janic, M., Reggiani, A.: An application of the multiple criteria decision making (MCDM) analysis to the selection of a new hub airport. Eur. J. Transp. Infrastruct. Res. 2, 113–142 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.West Pomeranian University of TechnologySzczecinPoland

Personalised recommendations