On Classification of Linguistic Data—Case Study: Post-operative

  • Kalle SaastamoinenEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 56)


This article presents simple yet efficient way to classify Post-operative patient data. The classification task of this database is to determine where patients in a postoperative recovery area should be sent to next. Because hypothermia is a significant concern after surgery, the attributes correspond roughly to the body temperature measurements. What makes classification task difficult here is that the most of the attributes are given by linguistic values. Method proposed in this article starts by representing linguistic variables by suitable numbers, which are later normalized into the values between 0 and 1. Next phase this data is classified using simple similarity classifier. Results are compared to the existing results and method presented in this paper provides mean accuracy of 65.23 % whereas second highest reported result is 62.67 % using similarity classifier with PCA and membership functions.


Linguistic data Post-operative Classification 


  1. 1.
    Bouchon-Meunier, B., Rifqi, M.: Bothorel, Sylvie: Towards general measures of comparison of objects. Fuzzy Sets Syst. 84(2), 143–153 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Luukka, P.: PCA for fuzzy data and similarity classifier in building recognition system for post-operative patient data. Expert Syst. Appl. 362(1), 1222–1228 (2009)CrossRefGoogle Scholar
  3. 3.
    UCI ML Rep., various authors.: UCI Repository of Machine Learning Databases network document. Accessed 14 March 2004
  4. 4.
    Frink Jr., O.: New Algebras of Logic. Am. Math. Monthly 45, 210–219 (1938)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications, pp. 304–321. Prentice Hall, PTR (1995)Google Scholar
  7. 7.
    Kundu, S., Chen, J.: Fuzzy logic or Lukasiewicz logic: a clarification. Fuzzy Sets Syst. 95, 369–379 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Saastamoinen K., Könönen V., Luukka P.: A classifier based on the fuzzy similarity in the Łukasiewicz-structure with different metrics. In: Proceedings of the FUZZ-IEEE 2002 Conference, Hawaii USA (2002)Google Scholar
  9. 9.
    Saastamoinen, K., Luukka, P.: Testing continuous t-norm called Łukasiewicz algebra with different means in classification. In: Proceedings of the FUZZ-IEEE 2003 Conference, St Louis, USAGoogle Scholar
  10. 10.
    Saastamoinen, K.: Semantic study of the use of parameterized s-implications and equivalences in comparison. In: Proceedings of the IEEE 2004 Conference on Cybernetic and Intelligent Systems, SingaporeGoogle Scholar
  11. 11.
    Smets, P., Magrez, P.: Implication in fuzzy logic. Int. J. Approx. Reason. 1(4), 327–347 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Whalen, T.: Parameterized R-implications. Fuzzy Sets Syst. 134(2), 231–281 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carbonell M., Mas M., Mayor G.: On a class of monotonic extended OWA operators. In: Proceedings of the 6th IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1695–1700 (1997)Google Scholar
  14. 14.
    Turunen, E.: Mathematics Behind Fuzzy Logic. Advances in Soft Computing. Physica-Verlag, Heidelberg (1999)zbMATHGoogle Scholar
  15. 15.
    Hastie, T., Tibshirani, R.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Technical Report 9001. University of Illinois at Urbana-Champain (1990)Google Scholar
  17. 17.
    Mantel, B., Periaux, J., Sefrioui M.: Gradient and genetic optimizers for aerodynamic desing. In: ICIAM 95 Conference, Hamburgh (1995)Google Scholar
  18. 18.
    Michalewics, Z.: Genetic Algorithms + Data Structures = Evolution Programs Artificial Intelligence. Springer, New York (1992)CrossRefGoogle Scholar
  19. 19.
    Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986)CrossRefGoogle Scholar
  20. 20.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution—A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)Google Scholar
  21. 21.
    Auephanwiriyakul, S., Theera-Umpon, N.: Comparison of linguistic and regular hard C-means in postoperative patient data. J. Adv. Comput. Intell. Intell. Inf. 8(6), 599–605 (2004)Google Scholar
  22. 22.
    Woolery, L., Grzymala-Busse, J., Summers, S., Budihardjo, A.: The use of machine learning program LERS-LB 2.5 in knowledge acquisition for expert system development in nursing. Comput. Nursing 9(6), 227–234 (1991)Google Scholar
  23. 23.
    Corder, G.W., Foreman, D.I.: Nonparametric statistics for non-statisticians: a step-by-step approach. Wiley (2009)Google Scholar
  24. 24.
    Krejcie, R.V., Morgan, D.W.: Determining sample size for research activities. Educ. Psychol. Meas. 30(3), 607–610 (1970)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Military Technology, National Defence UniversityHelsinkiFinland

Personalised recommendations