Advertisement

A Memetic Fuzzy ARTMAP by a Grammatical Evolution Approach

  • Shing Chiang TanEmail author
  • Chee Peng Lim
  • Junzo Watada
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 56)

Abstract

This paper presents a memetic fuzzy ARTMAP (mFAM) model constructed using a grammatical evolution approach. mFAM performs adaptation through a global search with particle swarm optimization (PSO) as well as a local search with the FAM training algorithm. The search and adaptation processes of mFAM are governed by a set of grammatical rules. In the memetic framework, mFAM is constructed and it evolves with a combination of PSO and FAM learning in an arbitrary sequence. A benchmark study is carried out to evaluate and compare the classification performance between mFAM and other state-of-art methods. The results show the effectiveness of mFAM in providing more accurate prediction outcomes.

Keywords

Grammatical evolution Fuzzy ARTMAP Particle swarm optimization Data classification 

References

  1. 1.
    Shen, F., Ouyang, Q., Kasai, W., Hasegawa, O.: A general associative memory based on self-organizing incremental neural network. Neurocomputing 104, 57–71 (2013)CrossRefGoogle Scholar
  2. 2.
    Fišer, D., Faigl, J., Kulich, M.: Growing neural gas efficiently. Neurocomputing 104, 72–82 (2013)CrossRefGoogle Scholar
  3. 3.
    Ploj, B., Harb, R., Zorman, M.: Border Pairs method—constructive MLP learning classification algorithm. Neurocomputing 126, 180–187 (2014)CrossRefGoogle Scholar
  4. 4.
    Reiner, P., Wilamowski, B.M.: Efficient Incremental construction of RBF networks using quasi-gradient method. Neurocomputing 150, 349–356 (2015)CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Ji, H., Zhang, W.: TPPFAM: use of threshold and posterior probability for category reduction in fuzzy ARTMAP. Neurocomputing 124, 63–71 (2014)CrossRefGoogle Scholar
  6. 6.
    Allahyar, A., Yazdi, H.S., Harati, A.: Constrained semi-supervised growing self-organizing map. Neurocomputing 147, 456–471 (2015)CrossRefGoogle Scholar
  7. 7.
    Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Networks 8, 694–713 (1997)CrossRefGoogle Scholar
  8. 8.
    Dragoni, M., Azzini, A., Tettamanzi, A.G.B.: SimBa: a novel similarity-based crossover for neuro-evolution. Neurocomputing 130, 108–122 (2014)CrossRefGoogle Scholar
  9. 9.
    Karami, A., Guerrero-Zapata, M.: A hybrid multiobjective RBF-PSO method for mitigating Dos attacks in named data networking. Neurocomputing 151, 1261–1282 (2015)CrossRefGoogle Scholar
  10. 10.
    Tan, S.C., Lim, C.P.: Evolving an adaptive artificial neural network with a gravitational search algorithm. In: Neves-Silva R. et al. (eds) Intelligent Decision Technologies, Smart Innovation, Systems and Technologies, vol. 39, pp. 599–609 (2015)Google Scholar
  11. 11.
    Mavrovouniotis, M., Yang, S.: Training Neural Networks with Ant Colony Optimization Algorithms for Pattern Classification. Soft. Comput. 19, 1511–1522 (2015)CrossRefGoogle Scholar
  12. 12.
    Moscato P.: Memetic Algorithms: a short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, McGraw-Hill, pp. 219–234 (1999)Google Scholar
  13. 13.
    Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)Google Scholar
  14. 14.
    O’Neil, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5, 349–358 (2001)CrossRefGoogle Scholar
  15. 15.
    Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H., Rosen, D.B.: Fuzzy Artmap: a neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Trans. Neural Networks 3, 698–713 (1992)CrossRefGoogle Scholar
  16. 16.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceeding of the IEEE International Conference on Neural Networks, pp. 1942–1948. Perth, Australia (1995)Google Scholar
  17. 17.
    Naur, P.: Revised report on the algorithmic language ALGOL 60. Commun. ACM 6, 1–17 (1963)CrossRefzbMATHGoogle Scholar
  18. 18.
    Baskar, S., Subraraj, P., Rao, M.V.C.: Performance of hybrid real coded genetic algorithms. Int. J. Comput. Eng. Sci. 2, 583–602 (2001)CrossRefGoogle Scholar
  19. 19.
    Ripley, B.D.: Neural networks and related methods for classification. J. Roy. Stat. Soc.: Ser. B (Methodol.) 56, 409–456 (1994)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Asuncion, A., Newman, D.J.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA (2007). http://www.ics.uci.edu/~mlearn/MLRepository.html
  21. 21.
    Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ding, S., Xu, L., Su, C., Jin, F.: An optimizing method of rbf neural network based on genetic algorithm. Neural Comput. Appl. 21, 333–336 (2012)CrossRefGoogle Scholar
  23. 23.
    Kohavi, R.: A study of cross validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference Artificial Intelligence (IJCAI), pp. 1137–1145. Morgan Kaufmann (1995)Google Scholar
  24. 24.
    Tallón-Ballesteros, A.J., Hervás-Martínez, C., Riquelme, J.C., Ruiz, R.: Feature selection to enhance a two-stage evolutionary algorithm in product unit neural networks for complex classification problems. Neurocomputing 114, 107–117 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Shing Chiang Tan
    • 1
    Email author
  • Chee Peng Lim
    • 2
  • Junzo Watada
    • 3
  1. 1.Multimedia UniversityCyberjayaMalaysia
  2. 2.Deakin UniversityWaurn PondsAustralia
  3. 3.Waseda UniversityTokyoJapan

Personalised recommendations