A Double Layer Neural Network Based on Artificial Bee Colony Algorithm for Solving Quadratic Bi-Level Programming Problem

  • Junzo WatadaEmail author
  • Haochen Ding
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 56)


In this study, we formulate a double layer neural network based hybrid method to solve the quadratic bi-level programming problem. Our proposed algorithm comprises an improved artificial bee colony algorithm, a Hopfield network, and a Boltzmann machine in order to effectively and efficiently solve such problems. The improved artificial bee colony algorithm is developed for dealing with the upper level problem. The experiment results indicate that compared with other methods, the proposed double layer neural network based hybrid method is capable of achieving better optimal solutions for the quadratic bi-level programming problem.


Bi-level programming problem Double layer neural networks Artificial bee colony algorithm 


  1. 1.
    Bard, J.F., Moore, J.T.: A branch and bound algorithm for the bilevel programming problem. SIAM J. Sci. Stat. Comp. 11(2), 281–292 (1990)Google Scholar
  2. 2.
    Bard, J.F., Plummer, J., Sourie, J.C.: A bilevel programming approach to determining tax credits for biofuel production. Eur. J. Oper. Res. 120(1), 30–46 (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications, vol. 30, 476 pages. Springer (1998)Google Scholar
  4. 4.
    Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Ann. Oper. Res. 153(1), 235–256 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Colson, B., Marcotte, P., Savard, G.: Bilevel programming: a survey. OR 43(2), 87–107 (2005)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dempe, S.: Foundations of Bilevel Programming. Springer (2002)Google Scholar
  7. 7.
    Dempe, S.: Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optim.: J. Math. Progr. Oper. Res. 52(3), 333–359 (2003)Google Scholar
  8. 8.
    Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level programming problem. J. Oper. Res. Soc. 32(9), 783–792 (1981)Google Scholar
  9. 9.
    Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13(5), 1194–1217 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hobbs, B.F., Carolyn, B.M., Pang, J.S.: Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Trans. Power Syst. 15(2), 638–645 (2000)Google Scholar
  11. 11.
    Li, H., Jiao, Y., Zhang, L.: Orthogonal genetic algorithm for solving quadratic bilevel programming problems. J. Syst. Eng. Electr. 21(5), 763–770 (2010)CrossRefGoogle Scholar
  12. 12.
    Li, J., Watada, J., Yaakob, S.B.: A genetic algorithm based double layer neural network for solving quadratic bilevel programming problem. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 382–389. IEEE (2014)Google Scholar
  13. 13.
    Lv, Y., Tiesong, H., Wang, G., Wan, Z.: A neural network approach for solving nonlinear bilevel programming problem. Comput. Math. Appl. 55(12), 2823–2829 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Lv, Y., Chen, Z., Wan, Z.: A neural network for solving a convex quadratic bilevel programming problem. J. Comput. Appl. Math. 234(2), 505–511 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Marcotte, P., Gilles, S.: Bilevel programming: a combinatorial perspective. In: Graph Theory and Combinatorial Optimization, pp. 191–217. Springer US (2005)Google Scholar
  16. 16.
    Muu, L.D., Van Quy, N.: Global optimization method for solving convex quadratic bilevel programming problems. J. Global Optim. 26(2), 199–219 (2003)Google Scholar
  17. 17.
    Savard, G., Gauvin, J.: The steepest descent direction for the nonlinear bilevel programming problem. Oper. Res. Lett. 15(5), 265–272 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sherali, H.D., Soyster, A.L., Murphy, F.H.: Stackelberg-Nash-Cournot equilibria: characterizations and computations. Oper. Res. 31(2), 253–276 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shih, H.-S., Wen, U.-P., Lee, S., Lan, K.-M., Hsiao, H.-C.: A neural network approach to multiobjective and multilevel programming problems. Comput. Math. Appl. 48(1), 95–108 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vicente, L.N., Calamai, P.H.: Bilevel and multilevel programming: a bibliography review. J. Global Optim. 5(3), 291–306 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vicente, L., Savard, G., Judice, J.: Discrete linear bilevel programming problem. J. Optim. Theory Appl. 89(3), 597–614 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Watada, J., Oda, K.: Formulation of a two-layered Boltzmann machine for portfolio selection. Int. J. Fuzzy Syst. 2(1), 39–44 (2001)Google Scholar
  23. 23.
    Yaakob, S.B., Watada, J., Fulcher, J.: Structural learning of the Boltzmann machine and its Application to life cycle management.Neurocomputing 74(12–13), 2193–2200 (2011)Google Scholar
  24. 24.
    Yang, Hai, Bell, M.G.H.: Models and algorithms for road network design: a review and some new developments. Transp. Rev. 18(3), 257–278 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Graduate School of Information, Production and SystemsWaseda UniversityFukuokaJapan

Personalised recommendations