Ant Clustering Algorithm with Information Theoretic Learning

  • Urszula BoryczkaEmail author
  • Mariusz Boryczka
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 56)


In this paper a novel ant clustering algorithm with information theoretic learning consolidation is presented. Derivation of the information potential and its force from Renyi’s entropy have been used to create an interesting model of ant’s movement during clusterization process. In this approach each object is treated as a single agent-ant. What is more, in a local environment each agent-ant moves in accordance to information forces influence. The outcome of all information forces determines the direction and range of agent-ants’ movement. Stopping criterion used in this approach indirectly emerges from Renyi entropy. This modified algorithm has been tested on different data sets and comparative study shows the effectiveness of the proposed clustering algorithm.


Ant clustering algorithm Data mining Information theoretic learning 


  1. 1.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence. From Natural to Artificial Systems. Oxford University Press, New York (1999)Google Scholar
  2. 2.
    Boryczka, U.: Finding groups in data: cluster analysis with ants. Appl. Soft Comput. 9(1), 61–70 (2009)CrossRefGoogle Scholar
  3. 3.
    Boryczka, U.: Ant colony metaphor in a new clustering algorithm. Control Cybern. 39(2), 343–358 (2010)Google Scholar
  4. 4.
    Chen, L., Tu, L., Chen, H.: A novel ant clustering algorithm with digraph. In: Wang, L., Chen, K., Ong, J. (eds.) Advances in Natural Computation: First International Conference, ICNC 2005, Changsha, China. pp. 1218–1228. Volume 3611 of the series Lecture Notes in Computer Science, Springer (2005)Google Scholar
  5. 5.
    Chen, Q., Mo, J.: Optimizing the ant clustering model based on k–means algorithm. In: Proceeding of the 2009 WRI World Congerss on Computer Science and Information Engineering. vol. 3, pp. 699–702 (2009)Google Scholar
  6. 6.
    Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting: Robot–like ant and ant–like robot. In: Meyer, J.A., Wilson, S.W. (eds.) First Conference on Simulation of Adaptive Behavior. From Animals to Animats. pp. 356–365 (1991)Google Scholar
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)zbMATHGoogle Scholar
  8. 8.
    Fernandes, C., Merelo, J.J., Mora, A.M., Ramos, V., Laredo, J.L.J.: Kohonants: A self–organizing algorithm for clustering and pattern classification. Artificial Life pp. 428–435 (XI 2008)Google Scholar
  9. 9.
    Gutowitz, H.: Complexity—seeking ants (1993), unpublished reportGoogle Scholar
  10. 10.
    Handl, J., Meyer, B.: Improved ant–based clustering and sorting in a document retrieval interface. In: Verlag, S. (ed.) PPSN — VII. Seventh international Conference on Parallel Problem Solving from Nature. pp. 913–923. Berlin (2002)Google Scholar
  11. 11.
    Handl, J., Knowles, J., Dorigo, M.: Ant–based clustering: a comparative study of its relative performance with respect to k–means, average link and id–som. Technical Report 24, IRIDIA, Universite Libre de Bruxelles, Belgium (2003)Google Scholar
  12. 12.
    Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)CrossRefGoogle Scholar
  13. 13.
    Kaufman, L., Russeeuw, P.: Finding groups in data: an introduction to cluster analysis. Wiley (1990)Google Scholar
  14. 14.
    Lumer, E., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Third international Conference on simulation of Adaptive Behavior: From animals to Animats 3. pp. 489–508. MIT Press, Cambridge (1994)Google Scholar
  15. 15.
    Monmarché, N., Slimane, M., Venturini, G.: Antclass: discovery of clusters in numeric data by an hybridization of an ant colony with the k-means algorithm. Technical report, Laboratoire d’Informatique, Écolé d’Ingénieurs en Informatique pour l’Industrie, Université de Tours (1999), internal Report no. 213Google Scholar
  16. 16.
    Principe, J.: Information Theoretic Learning. Springer, Renyi’s Entropy and Kernel Perspectives (2010)Google Scholar
  17. 17.
    Runkler, T.: Ant colony optimization of clustering model. Int. J. Intell. Syst. 20(12), 1233–1261 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Vizine, A., de Castro, L., Hruschka, E.: Towards improving clustering ants: adaptive clustering algorithm. Inform. J. 29(2), 143–154 (2005)zbMATHGoogle Scholar
  19. 19.
    Zhang, L., Cao, Q., Lee, J.: A novel ant-based clustering algorithm using Renyi entropy. Appl. Soft Comput. 13(5), 2643–2657 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Computer Science, University of SilesiaSosnowiecPoland

Personalised recommendations