Advertisement

Probabilistic Ontology Definition Meta-Model

Extension of OWL2 Meta-Model for Defining Probabilistic Ontologies
  • Hlel EmnaEmail author
  • Jamoussi Salma
  • Turki Mohamed
  • Ben Hamadou Abdelmajid
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 56)

Abstract

In this article, we have proposed an extension of OWL2 meta-model for representing the fundamental elements of probabilistic ontologies (POs). This meta-model, called Probabilistic Ontology Definition Meta-model (PODM), provides support for defining probabilistic ontologies. In addition, we have enriched PODM (by using Object Constraint Language) with a list of constraints specifying invariants that have to be fulfilled by all models that instantiate this meta-model. These constraints allow eliminating ambiguities and inconsistencies that exist in this model.

Keywords

Probabilistic ontology Meta-model Probabilistic components 

References

  1. 1.
    Predoiu, L., Stuckenschmidt, H.: Probabilistic models for the semantic web: survey. In: Web Technologies: Concepts, Methodologies, Tools, and Applications, pp. 1896–1928. University of Victoria, Germany (2010)Google Scholar
  2. 2.
    Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL2 web ontology language: structural specification and functional-style syntax (2012)Google Scholar
  3. 3.
    da Costa, P.C.G., Laskey, K.B.: PR-OWL: A Bayesian ontology language for the Semantic Web. In: Proceedings URSW, pp. 23–33 (2005)Google Scholar
  4. 4.
    Hlel, E., Jamoussi, S., Ben Hamadou, A.: A probabilistic ontology for the prediction of author’s Interests. In: International Conference ICCCI (Springer), pp. 492–501 (2015)Google Scholar
  5. 5.
    Hlel, E., Jamoussi, S., Ben Hamadou, A.: Intégration d’un réseau bayésien dans une ontologie. In: Actes des 25 journées francophones IC2014, pp. 295–297 (2014)Google Scholar
  6. 6.
    Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Proceedings HICSS, pp. 5–8 (2004)Google Scholar
  7. 7.
    Holmes, D.E., Jain, L.C.: Innovations in Bayesian networks: theory and applications. Comput. Intell. (2008). SpringerGoogle Scholar
  8. 8.
    Ben Mrad, A., Delcroix, V., Piechowiak, S., Leicester, P., Abid, M.: An explication of uncertain evidence in Bayesian networks: likelihood evidence and probabilistic evidence—uncertain evidence in Bayesian networks. Appl. Intell. 802–824 (2015)Google Scholar
  9. 9.
    Yang, Y., Calmet, J.: Ontobayes: an ontology-driven uncertainty model. In: Conference on Intelligent Agents, Web Technologies and Internet Commerce, pp. 457–464 (2005)Google Scholar
  10. 10.
    Essaid, A., Ben Yaghlane, B.: BeliefOWL: an evidential representation in OWL ontology. In: International Workshop on URSW, Washington DC, USA, pp. 77–80 (2009)Google Scholar
  11. 11.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  12. 12.
    Nottelmann, H., Fuhr, N.: pDAML + OIL: a probabilistic extension to DAML + OIL based on probabilistic datalog. In :Information Processing and Management of Uncertainty in Knowledge-Based Systems (2004)Google Scholar
  13. 13.
    Giugno, R., Lukasiewicz, T.: P-SHOQ(D): a probabilistic extension of SHOQ(D) for probabilistic ontologies in the semantic web. In: INFSYS, Austria, Research Report (2002)Google Scholar
  14. 14.
    Fabio, G., Rodrigo, B.P., Takiyamaa, F.I., Kate, R.C.: Computing inferences for credal ALC terminologies. In: URSW, pp. 94–97 (2011)Google Scholar
  15. 15.
    Horrocks, I., Sattler, U.: Ontology reasoning in the SHOQ(D) description logic. In: The 17th Conference on Artificial Intelligence (IJCAI) (2001)Google Scholar
  16. 16.
    Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. In: Artif. Intell. 1–26 (1991)Google Scholar
  17. 17.
    OMG-MOF, Object Management Group, MOF 2.0 Core Specification (2009)Google Scholar
  18. 18.
    OMG-UML, Unified Modeling Language, OMG UML (2015)Google Scholar
  19. 19.
    OMG-OCL, Object Constraint Language OCL, version 2.4 (2014)Google Scholar
  20. 20.
    Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL ontologies using UML. In: The Third International SW, pp. 198–213, Japan (2004)Google Scholar
  21. 21.
    Parreiras, F.S.: Semantic web and model-driven engineering, 1st edn. Institute of Electrical and Electronics Engineers. IEEE Press (2012)Google Scholar
  22. 22.
    OMG-ODM, Ontology Definition Metamodel Version 1.0 (2009)Google Scholar
  23. 23.
    Horridge, M.: A Practical Guide to Building OWL Ontologies Using Protégé 4 and CO-ODE Tools. University of Manchester, Manchester (2009)Google Scholar
  24. 24.
    Ramirez, A., Vanpeperstraete, P., Rueckert, A., Odutola, K., Bennett, J., Tolke, L., van der Wulp, M.: ArgoUML user manual a tutorial and reference description (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hlel Emna
    • 1
    Email author
  • Jamoussi Salma
    • 1
  • Turki Mohamed
    • 1
  • Ben Hamadou Abdelmajid
    • 1
  1. 1.Miracl LaboratoryTechnology Center of SfaxSakiet Ezzit, SfaxTunisia

Personalised recommendations