Skip to main content

A Bayesian Approach to Classify the Music Scores on the Basis of the Music Style

  • Conference paper
  • First Online:
Intelligent Decision Technologies 2016

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 57))

  • 764 Accesses

Abstract

This article presents a new version of the algorithm proposed by Della Ventura (12th TELE-INFO International Conference on Recent Researches in Telecommunications, and Informatics, 2013, [1]) to classify the musical scores. Score classification means an automatic process of assignment of the specific score to a certain class or category: baroque, romantic or contemporary music. The algorithm is based on a Bayesian probabilistic model that extends the Naive Bayes classifier by adding a variable tied to the value of the information contained within the. The score is not seen as a single entity, but as a set of subtopics, every single one of which identifies and represents a standard feature of music writing. The classification of the score is done on the basis of its subtopics: an intermediate level of classification is thus introduced, which induces a hierarchical classification. The new algorithm performs equally well on the old dataset, but gives much better results on the new larger and more diverse dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Della Ventura, M.: Detection of historical period in symbolic music data: revisited version. In: 12th TELE-INFO International Conference on Recent Researches in Telecommunications, and Informatics. Baltimore, MD, USA (2013)

    Google Scholar 

  2. Ahmed, I., Guan, D., Chung, T.C.: SMS classification based on Naïve Bayes classifier and a priori algorithm frequent item set. Int. J. Mach. Learn. Comput. 4(2) (2014)

    Google Scholar 

  3. Fortuna, B., Mendes Rodrigues, E., Milic-Frayling, N.: Improving the classification of newsgroup messages through social network analysis. In: 16th ACM Conference on Information and Knowledge Management, pp. 877–880. New York (2007)

    Google Scholar 

  4. Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: 17th ACM Symposium on Applied Computing, pp. 1556–1560. New York (2008)

    Google Scholar 

  5. Newman, D.: Visualizing search results and document collections using topic maps. Web Semant. Sci. Serv. Agents World Wide Web 8(2–3), 169–175 (2010)

    Article  Google Scholar 

  6. Kanaka Durga, V., Raja Ramesh, M.R.: Accurate spam mail detection using Bayesian algorithm. Int. J. Adv. Res. Comput. Eng. Technol. 1(4) (2012)

    Google Scholar 

  7. Thorsten, J.: Text categorization with suport vector machines: learning with many relevant features. In: 10th European Conference on Machine Learning, p. 137–142, 21–23 April 1998

    Google Scholar 

  8. Wei, Z., Zhang, H., Zhang, Z., Li, W., Miao, D.: A Naive Bayesian multi-label classification algorithm with application to visualize text search results. Int. J. Adv. Intell. 3(2), 173–188 (2011)

    Google Scholar 

  9. Anan, Y., Hatano, K., Bannai, H., Takeda, M.: Music genre classification using similarity functions. In: 12th ISMIR International Society for Music Information Retrieval Conference, pp. 693–698 (2011)

    Google Scholar 

  10. Pancini, M.: Problematiche e modelli formali per la segmentazione automatica/interattiva di partiture musicali simboliche. Rapporto Tecnico CNR-PFBC-MUS-TR (2000)

    Google Scholar 

  11. Della Ventura, M.: The Influence of the rhythm with the pitch on melodic segmentation. In: 2nd ECC Euro-China Conference on Intelligent Data Analysis and Applications, pp. 191–202. Springer (2015)

    Google Scholar 

  12. Cambouropoulos, E., Tsougras, C.: Influence of musical similarity on melodic segmentation: representations and algorithms. In: 1st SMC International Conference on Sound and Music Computing. Paris, France (2004)

    Google Scholar 

  13. Cambouropoulos, E.: How similar is similar? Musicae Scientiae Discussion Forum 4B, 7–24 (2009)

    Article  Google Scholar 

  14. Della Ventura, M.: Evaluation of musical similarity on the symbolic level of the musical text. In: 15th ICAI International Conference on Artificial Intelligence. Las Vegas, USA (2013)

    Google Scholar 

  15. Della Ventura, M.: Discovering hidden themes in symbolic music text. In: 6th ICSTE International Conference on Software Technology and Engineering. Paris, France (2014)

    Google Scholar 

  16. Pérez-Sancho, C., Rizo, D., Inesta, J.M.: Stochastic text models for music categorization. In: da Vitoria Lobo, N., et al. (eds.) SSPR & SPR 2008. LNCS, vol. 5342, pp. 55–64. Springer (2008)

    Google Scholar 

  17. Pérez-Sancho, C.: Stochastic language models for music information retrieval. Ph.D. thesis, Universidad de Alicante, Alicante, Spain (2009)

    Google Scholar 

  18. Pérez-Sancho, C., Rizo, D., Inesta, J.M., Ponce de León, P.J., Kersten, S., Ramirez, R.: Genre classification of music by tonal harmony. Intell. Data Anal. 14, 533–545 (2010)

    Google Scholar 

  19. Dor, O., Reich, Y.: An evaluation of musical score characteristics for automatic classification of composers. Comput. Music J. 35(3), 86–97 (2011)

    Article  Google Scholar 

  20. Domingos, P., Pazzani, M.: Beyond independence: conditions for the optimality of the simple Bayesian classifier. Mach. Learn. 29(2/3), 103–130 (1997)

    Article  MATH  Google Scholar 

  21. Bruntine, W.L., Weigend, A.S.: Bayesian backpropagation. Complex Syst. 5, 603–643 (1991)

    Google Scholar 

  22. Langley, P.W., Thompson, K.: An analysis of Bayesian classifiers. In: 10th National Conference on Artificial Intelligence, pp. 223–228. AAAI Press, Menlo Park, CA (1992)

    Google Scholar 

  23. de la Motte, D.: The Study of Harmony. Barenreiter (1976)

    Google Scholar 

  24. Fraisse, P.: Psychologie du rythme. Puf. Paris (1974)

    Google Scholar 

  25. Fraisse, P.: Les strutctures rythmiques. Erasme, Paris (1958)

    Google Scholar 

  26. de la Motte, D.: Il contrappunto. Un libro da leggere e da studiare. Universal Music MGB (1991)

    Google Scholar 

  27. Angeleri, E.: Information, meaning and universalit. UTET, Turin (2000)

    Google Scholar 

  28. Moles, A.: Teorie de l’information et Perception esthetique. Paris, Flammarion Editeur (1958)

    Google Scholar 

  29. Lerdhal, L., Jackendoff, R.: A Grammatical Parallel between Music and Language. Plenum Press, New York (1982)

    Google Scholar 

  30. Weaver, W., Shannon, C.: The Mathematical Theory of Information. Illinois Press, Urbana (1964)

    Google Scholar 

  31. Coltro, B.: Lezioni di armonia complementare. Zanibon (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Della Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ventura, M.D. (2016). A Bayesian Approach to Classify the Music Scores on the Basis of the Music Style. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies 2016. Smart Innovation, Systems and Technologies, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-39627-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39627-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39626-2

  • Online ISBN: 978-3-319-39627-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics