Skip to main content

Acid–Base Regulation in Insect Haemolymph

  • Chapter
  • First Online:
Book cover Acid-Base Balance and Nitrogen Excretion in Invertebrates

Abstract

Insects regulate the acid–base balance of their haemolymph by ventilation, buffering and active uptake and excretion of acid–base equivalents with their gut. Haemolymph pH varies widely across ontogeny and between species, varying from acidic (~6.4) to alkaline (~8.0). Terrestrial and aquatic insects are exposed to different acid–base challenges by virtue of their environment and have evolved different mechanisms to cope. Terrestrial insects use bicarbonate buffering and change in ventilation to respond to metabolic acid loads, as well as clearing excess acid through excretion into the lumen of the hindgut. V-ATPase and Na+/K+-ATPase in the hindgut/Malpighian tubule complex generates the transmembrane electrochemical potential necessary to drive uptake and excretion of acid–base equivalents and ions. The activity of these transport processes is under hormonal control. While aquatic insects also use their hindgut for acid–base regulation, they possess additional ion-transporting chloride cells on parts of their cuticle that are in contact with the surrounding water. These cells provide an extra-renal pathway for regulating haemolymph pH and osmolality, relying on ion transport driven directly and indirectly by V- and Na+/K+-ATPases. While aquatic insects are among the most pH-tolerant animals on the planet, the mechanisms that allow them to tolerate chronic exposure to highly acidic or alkaline water across a wide range of ionic strengths are incompletely understood and require further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badre NH, Martin ME, Cooper RL (2005) The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp Biochem Physiol A Mol Integr Physiol 140(3):363–376

    Article  PubMed  Google Scholar 

  • Bedford JJ, Leader JP (1975) Haemolymph composition in the larva of the dragonfly, Uropetala carovei. J Entomol Ser A Gen Entomol 50(1):1–7

    Article  Google Scholar 

  • Bridges CR, Scheid P (1982) Buffering and CO2 dissociation of body fluids in the pupa of the silkworm moth, Hyalaphora cecropia. Respir Physiol 48(2):183–197

    Article  CAS  PubMed  Google Scholar 

  • Buck J, Friedman S (1958) Cyclic CO2 release in diapausing pupae III: CO2 capacity of the blood: Carbonic anhydrase. J Insect Physiol 2(1):52–60

    Article  CAS  Google Scholar 

  • Case JF (1957) Differentiation of the effects of pH and CO2 on spiracular function of insects. J Cell Comp Physiol 49(1):103–113

    Article  CAS  Google Scholar 

  • Case JF (1961) Effects of acids on an isolated insect respiratory center. Biol Bull 121(2):385

    Google Scholar 

  • Chapman RF (2013) The insects: structure and function, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Claiborne JB, Edwards SL, Morrison-Shetlar AI (2002) Acid–base regulation in fishes: cellular and molecular mechanisms. J Exp Zool 293(3):302–319. doi:10.1002/jez.10125

    Article  CAS  PubMed  Google Scholar 

  • Clark TM, Flis BJ, Remold SK (2004) pH tolerances and regulatory abilities of freshwater and euryhaline Aedine mosquito larvae. J Exp Biol 207(13):2297–2304. doi:10.1242/jeb.01021

    Article  PubMed  Google Scholar 

  • Clark TM, Vieira MAL, Huegel KL, Flury D, Carper M (2007) Strategies for regulation of hemolymph pH in acidic and alkaline water by the larval mosquito Aedes aegypti (L.) (Diptera; Culicidae). J Exp Biol 210(24):4359–4367. doi:10.1242/jeb.010694

    Article  CAS  PubMed  Google Scholar 

  • Cooper PD (1994) Mechanisms of hemolymph acid-base regulation in aquatic insects. Physiol Zool 67(1):29–53

    Article  CAS  Google Scholar 

  • Cooper PD, Vulcano R (1997) Regulation of pH in the digestive system of the cricket, Teleogryllus commodus Walker. J Insect Physiol 43(5):495−499. doi:http://dx.doi.org/10.1016/S0022-1910(97)85495-9

  • Cooper PD, Scudder GGE, Quamme GA (1987) Ion and CO2 regulation in the freshwater water boatman, Cenocorixa blaisdelli (Hung.) (Hemiptera, Corixidae). Physiol Zool 60(4):465–471. doi:10.2307/30157908

  • Correa M, Coler RA, Yin C-M (1985) Changes in oxygen consumption and nitrogen metabolism in the dragonfly Somatochlora cingulata exposed to aluminum in acid waters. Hydrobiologia 121(2):151–156. doi:10.1007/bf00008718

    Article  CAS  Google Scholar 

  • Dejours P (1981) Principles of comparative respiratory physiology, 2nd edn. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Dejours P (1988) Respiration in water and air. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  • Del Duca O, Nasirian A, Galperin V, Donini A (2011) Pharmacological characterisation of apical Na+ and Cl transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti. J Exp Biol 214(23):3992–3999. doi:10.1242/jeb.063719

  • Donini A, O’Donnell MJ (2005) Analysis of Na+, Cl, K+, H+ and NH4 + concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208(4):603–610. doi:10.1242/jeb.01422

  • Dow JA (1984) Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol Regul Integr Comp Physiol 246(4):R633–R636

    CAS  Google Scholar 

  • Echalier G (1997) Drosophila cells in culture. Academic, San Diego

    Google Scholar 

  • Fox HM (1921) Methods of studying the respiratory exchange in small aquatic organisms, with particular reference to the use of flagellates as an indicator for oxygen consumption. J Gen Physiol 3(5):565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett M, Bradley TJ (1984) The pattern of osmotic regulation in larvae of the mosquito Culiseta inornata. J Exp Biol 113(1):133–141

    CAS  PubMed  Google Scholar 

  • Groenewald B, Chown SL, Terblanche JS (2014) A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). J Exp Biol 217(19):3407–3415. doi:10.1242/jeb.102814

  • Gu G-G, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila. J Neurobiol 28(3):269–280. doi:10.1002/neu.480280302

  • Gulinson SL, Harrison JF (1996) Control of resting ventilation rate in grasshoppers. J Exp Biol 199(2):379–389

    PubMed  Google Scholar 

  • Hanrahan JW, Phillips JE (1983) Cellular mechanisms and control of KCl absorption in insect hindgut. J Exp Biol 106(1):71–89

    CAS  PubMed  Google Scholar 

  • Harrison JM (1988) Temperature effects on haemolymph acid-base status in vivo and in vitro in the two-striped grasshopper Melanoplus bivittatus. J Exp Biol 140(1):421–435

    Google Scholar 

  • Harrison JF (1989a) Ventilatory frequency and haemolymph acid-base status during short-term hypercapnia in the locust, Schistocerca nitens. J Insect Physiol 35(11):809–814

    Article  Google Scholar 

  • Harrison JM (1989b) Temperature effects on intra- and extracellular acid-base status in the American locust, Schistocerca nitens. J Comp Physiol B-Biochem Syst Environ Physiol 158(6):763–770

    Article  Google Scholar 

  • Harrison JF (2001) Insect acid-base physiology. Annu Rev Entomol 46:221–250

    Article  CAS  PubMed  Google Scholar 

  • Harrison JF, Kennedy MJ (1994) In-vivo studies of the acid-base physiology of grasshoppers: The effect of feeding state on acid-base and nitrogen excretion. Physiological Zoology 67(1):120–141

    Google Scholar 

  • Harrison JF, Phillips JE (1992) Recovery from acute haemolymph acidosis in unfed locusts: II. Role of ammonium and titratable acid excretion. J Exp Biol 165(1):97–110

    CAS  Google Scholar 

  • Harrison JF, Wong CJH, Phillips JE (1990) Haemolymph buffering in the locust Schistocerca gregaria. J Exp Biol 154(1):573–579

    Google Scholar 

  • Harrison JF, Phillips JE, Gleeson TT (1991) Activity physiology of the two-striped grasshopper, Melanoplus bivittatus: Gas exchange, hemolymph acid-base status, lactate production, and the effect of temperature. Physiol Zool 64(2):451–472. doi:10.2307/30158185

    Article  Google Scholar 

  • Harrison JF, Wong CJ, Phillips JE (1992) Recovery from acute haemolymph acidosis in unfed locusts: I. Acid transfer to the alimentary lumen is the dominant mechanism. J Exp Biol 165(1):85–96

    CAS  Google Scholar 

  • Harrison JF, Hadley NF, Quinlan MC (1995) Acid-base status and spiracular control during discontinuous ventilation in grasshoppers. J Exp Biol 198(8):1755–1763

    PubMed  Google Scholar 

  • Havas M, Advokaat E (1995) Can sodium regulation be used to predict the relative acid-sensitivity of various life-stages and different species of aquatic fauna? Water Air Soil Pollut 85(2):865–870. doi:10.1007/BF00476938

    Article  CAS  Google Scholar 

  • Heimpel AM (1955) The pH in the gut and blood of the larch sawfly, Pristiphora erichsonii (Htg.), and other insects with reference to the pathogenicity of Bacillus cereus Fr. and Fr. Can J Zool 33(2):99–106

    Article  Google Scholar 

  • Henry RP, Wheatly MG (1992) Interaction of respiration, ion regulation, and acid-base balance in the everyday life of aquatic crustaceans. Am Zool 32(3):407–416

    Article  CAS  Google Scholar 

  • Hetz SK, Wasserthal LT (1993) Miniaturized pH-sensitive glass-electrodes for the continuous recording of hemolymph pH in resting butterfly pupae. Verhandlungen Der Deutschen Zoologischen Gesellschaft 86:92

    Google Scholar 

  • Holter P, Spangenberg A (1997) Oxygen uptake in coprophilous beetles (Aphodius, Geotrupes, Sphaeridium) at low oxygen and high carbon dioxide concentrations. Physiol Entomol 22(4):339–343

    Article  Google Scholar 

  • Jernelöv A, Nagell B, Svenson A (1981) Adaptation to an acid environment in Chironomus riparius (Diptera, Chironomidae) from Smoking Hills, NWT, Canada. Holarct Ecol 4(2):116–119. doi:10.2307/3682527

    Google Scholar 

  • Komnick H (1977) Chloride cells and chloride epithelia of aquatic insects. Int Rev Cytol 49:285–329

    Article  CAS  Google Scholar 

  • Komnick H, Achenbach U (1979) Comparative biochemical, histochemical and autoradiographic studies of Na+/K+ -ATPase in the rectum of dragonfly larvae (Odonata, Aeshnidae). Eur J Cell Biol 20(1):92–100

    Google Scholar 

  • Komnick H, Schmitz M (1977) Cutane Chloridaufnahme aus hypo-osmotischer Konzentration durch die Chloridzellen von Corixa punctata. J Insect Physiol 23(2):165–173. doi:http://dx.doi.org/10.1016/0022-1910(77)90026-9

  • Krolikowski K, Harrison J (1996) Haemolymph acid-base status, tracheal gas levels and the control of post-exercise ventilation rate in grasshoppers. J Exp Biol 199(2):391–399

    PubMed  Google Scholar 

  • Lechleitner RA, Cherry DS, Cairns J Jr, Stetler DA (1985) Ionoregulatory and toxicological responses of stonefly nymphs (Plecoptera) to acidic and alkaline pH. Arch Environ Contam Toxicol 14(2):179–185. doi:10.1007/bf01055609

    Article  CAS  Google Scholar 

  • Lechleitner RA, Audsley N, Phillips JE (1989) Composition of fluid transported by locust ileum: influence of natural stimulants and luminal ion ratios. Can J Zool 67(11):2662–2668. doi:10.1139/z89-376

    Article  CAS  Google Scholar 

  • Lettau J, Foster WA, Harker JE, Treherne JE (1977) Diel changes in potassium activity in the haemolymph of the cockroach Leucophaea maderae. J Exp Biol 71(1):171–186

    CAS  Google Scholar 

  • Levenbook L (1950) The physiology of carbon dioxide transport in insect blood: Part III. The buffer capacity of Gastrophilus blood. J Exp Biol 27(2):184–191

    CAS  PubMed  Google Scholar 

  • Maddrell SH, O’Donnell MJ (1992) Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J Exp Biol 172(1):417–429

    CAS  PubMed  Google Scholar 

  • Marais E, Klok CJ, Terblanche JS, Chown SL (2005) Insect gas exchange patterns: a phylogenetic perspective. J Exp Biol 208(23):4495–4507

    Article  PubMed  Google Scholar 

  • Matthews PG, White CR (2009) Rhinoceros beetles modulate spiracular opening to regulate haemolymph pH. Comp Biochem Physiol A Mol Integr Physiol 153(2, Suppl 1):S101–S102

    Google Scholar 

  • Matthews PGD, White CR (2011) Regulation of gas exchange and haemolymph pH in the cockroach Nauphoeta cinerea. J Exp Biol 214(18):3062–3073. doi:10.1242/jeb.053991

    Article  CAS  PubMed  Google Scholar 

  • Milsom WK (2002) Phylogeny of CO2/H+ chemoreception in vertebrates. Respir Physiol Neurobiol 131(1–2):29–41. doi:http://dx.doi.org/10.1016/S1569-9048(02)00035-6

  • Moffett D, Cummings S (1994) Transepithelial potential and alkalization in an in situ preparation of tobacco hornworm (Manduca sexta) midgut. J Exp Biol 194(1):341–345

    CAS  PubMed  Google Scholar 

  • Needham KM (1990) Specific and seasonal variation in survival and sodium balance at low pH in five species of waterboatmen (hemiptera: Corixidae), Masters Thesis, University of British Columbia

    Google Scholar 

  • Nguyen H, Donini A (2010) Larvae of the midge Chironomus riparius possess two distinct mechanisms for ionoregulation in response to ion-poor conditions. Am J Physiol Regul Integr Comp Physiol 299(3):R762–R773. doi:10.1152/ajpregu.00745.2009

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MJ, Maddrell SH (1995) Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosophila. J Exp Biol 198(8):1647–1653

    PubMed  Google Scholar 

  • Okech BA, Boudko DY, Linser PJ, Harvey WR (2008) Cationic pathway of pH regulation in larvae of Anopheles gambiae. J Exp Biol 211(6):957–968. doi:10.1242/jeb.012021

    Article  CAS  PubMed  Google Scholar 

  • Papaefthimiou C, Theophilidis G (2001) An in vitro method for recording the electrical activity of the isolated heart of the adult Drosophila melanogaster. In Vitro Cell Dev Biol Anim 37(7):445–449. doi:10.2307/4295243

  • Patrick ML, Gonzalez RJ, Wood CM, Wilson RW, Bradley TJ, Val AL (2002) The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake. Physiol Biochem Zool 75(3):223–236. doi:10.1086/342002

    Article  CAS  PubMed  Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+ -ATPase and V-type H+ -ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209(23):4638–4651. doi:10.1242/jeb.02551

  • Peach JL, Phillips JE (1991) Metabolic support of chloride-dependent short-circuit current across the locust (Schistocerca gregaria) ileum. J Insect Physiol 37(4):255–260. doi:http://dx.doi.org/10.1016/0022-1910(91)90059-9

  • Pelletier Y, Clark CL (1992) The haemolymph plasma composition of adults, pupae, and larvae of the colorado potato beetle, Leptinotarsa decemlinaeta (Say), and development of physiological saline solution. Can Entomol 124(6):945–949

    Google Scholar 

  • Phillips JE (1964) Rectal absorption in the desert locust, Schistocerca Gregaria Forskål I Water. J Exp Biol 41(1):15–38

    Google Scholar 

  • Phillips JE (1981) Comparative physiology of insect renal function. Am J Physiol Regul Integr Comp Physiol 241(5):R241–R257

    CAS  Google Scholar 

  • Phillips JE, Audsley N (1995) Neuropeptide control of ion and fluid transport across locust hindgut. Am Zool 35(6):503–514. doi:10.2307/3884156

    Article  CAS  Google Scholar 

  • Phillips JE, Hanrahan J, Chamberlin M, Thomson B (1987) Mechanisms and control of reabsorption in insect hindgut. In: Evans PD, Wigglesworth VB (eds) Advances in insect physiology, vol 19. Academic Press, pp 329–422. doi:http://dx.doi.org/10.1016/S0065-2806(08)60103-4

  • Phillips JE, Thomson RB, Audsley N, Peach JL, Stagg AP (1994) Mechanisms of acid-base transport and control in locust excretory system. Physiol Zool 67(1):95–119

    Article  CAS  Google Scholar 

  • Phillips JE, Meredith J, Audsley N, Richardson N, Macins A, Ring M (1998) Locust ion transport peptide (ITP): a putative hormone controlling water and ionic balance in terrestrial insects. Am Zool 38(3):461–470

    Article  CAS  Google Scholar 

  • Rockwood JP, Coler RA (1991) The effect of aluminum in soft water at low pH on water balance and hemolymph ionic and acid-base regulation in the dragonfly Libellula julia Uhler. Hydrobiologia 215(3):243–250. doi:10.1007/bf00764859

    Article  CAS  Google Scholar 

  • Snyder GK, Ungerman G, Breed M (1980) Effects of hypoxia, hypercapnia, and pH on ventilation rate in Nauphoeta cinerea. J Insect Physiol 26(10):699–702

    Article  CAS  Google Scholar 

  • Sohal RS, Copeland E (1966) Ultrastructural variations in the anal papillae of Aedes aegypti (L.) at different environmental salinities. J Insect Physiol 12(4):429–434. doi:http://dx.doi.org/10.1016/0022-1910(66)90006-0

  • Stagg AP, Harrison JF, Phillips JE (1991) Acid-base variables in Malpighian tubule secretion and response to acidosis. J Exp Biol 159(1):433–447

    CAS  Google Scholar 

  • Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61(12):1444–1461

    Article  CAS  PubMed  Google Scholar 

  • Stewart BA, Atwood HL, Renger JJ, Wang J, Wu CF (1994) Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J Comp Physiol A 175(2):179–191. doi:10.1007/BF00215114

  • Strange K, Phillips JE, Quamme GA (1982) Active HCO3 secretion in the rectal salt gland of a mosquito larva inhabiting NaHCO3-CO3 lakes. J Exp Biol 101(1):171–186

    Google Scholar 

  • Strange K, Phillips JE, Quamme GA (1984) Mechanisms of CO2 transport in rectal salt gland of Aedes. II. Site of Cl--HCO3 - exchange. Am J Physiol 246(5):R735–R740

    Google Scholar 

  • Szibbo CM, Scudder GGE (1979) Secretory activity of the segmented Malpighian tubules of Cenocorixa bifida (Hung.) (Hemiptera, Corixidae). J Insect Physiol 25(12):931–937. doi:http://dx.doi.org/10.1016/0022-1910(79)90105-7

  • Terra WR, De Bianchi AG, Lara FJS (1974) Physical properties and chemical composition of the hemolymph of Rhynchosciara americana (Diptera) larvae. Comp Biochem Physiol B Comp Biochem 47(1):117–129. doi:http://dx.doi.org/10.1016/0305-0491(74)90096-0

  • Thomson RB, Phillips JE (1992) Electrogenic proton secretion in the hindgut of the desert locust, Schistocerca gregaria. J Membr Biol 125(2):133–154. doi:10.1007/BF00233353

    Article  CAS  PubMed  Google Scholar 

  • Thomson RB, Speight JD, Phillips JE (1988a) Rectal acid secretion in the desert locust, Schistocerca gregaria. J Insect Physiol 34(9):829–837. doi:http://dx.doi.org/10.1016/0022-1910(88)90116-3

  • Thomson RB, Thomson JM, Phillips JE (1988b) NH4 + transport in acid-secreting insect epithelium. Am J Physiol Regul Integr Comp Physiol 254(2):R348–R356

    Google Scholar 

  • Thomson RB, Audsley N, Phillips JE (1991) Acid-base transport and control in locust hindgut: artefacts caused by short-circuit current. J Exp Biol 155(1):455–467

    Google Scholar 

  • Truchot JP (1987) Comparative aspects of extracellular acid-base balance, vol 20. Zoophysiology, Springer-Verlag, Berlin

    Google Scholar 

  • Vangenechten JHD, Witters H, Vanderborght OLJ (1989) Laboratory studies on invertebrate survival and physiology in acid waters. In: Morris R, Taylor EW, Brown DJA, Brown JA (eds) Acid toxicity and aquatic animals. Cambridge University Press, Cambridge, pp 153–169

    Chapter  Google Scholar 

  • Wasserthal LT (1996) Interaction of circulation and tracheal ventilation in holometabolous insects. Adv Insect Physiol 26:297–351

    Article  Google Scholar 

  • Weber RE (1980) Functions of invertebrate hemoglobins with special reference to adaptations to environmental hypoxia. Am Zool 20(1):79–101

    Article  CAS  Google Scholar 

  • Weber RE, Braunitzer G, Kleinschmidt T (1985) Functional multiplicity and structural correlations in the hemoglobin system of larvae of Chironomus thummi thummi (Insecta, Diptera): Hb components CTT I, CTT IIβ, CTT III, CTT IV, CTT VI, CTT VIIB, CTT IX and CTT X. Comp Biochem Physiol B 80(4):747–753

    CAS  PubMed  Google Scholar 

  • Wheeler RE (1963) Studies on the total haemocyte count and haemolymph volume in Periplaneta americana (L.) with special reference to the last moulting cycle. J Insect Physiol 9(2):223–235

    Article  Google Scholar 

  • Wichard W, Komnick H (1974) Fine structure and function of the rectal chloride epithelia of damselfly larvae. J Insect Physiol 20(8):1611–1621. doi:http://dx.doi.org/10.1016/0022-1910(74)90090-0

  • Wichard W, Komnick H, Abel JH Jr (1972) Typology of ephemerid chloride cells. Z Zellforsch 132(4):533–551. doi:10.1007/bf00306640

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1933) The function of the anal gills of the mosquito larva. J Exp Biol 10(1):16–26

    CAS  Google Scholar 

  • Wigglesworth VB (1972) The principles of insect physiology, 7th edn. Chapman and Hall, London

    Google Scholar 

  • Witters H, Vangenechten JHD, Van Puymbroeck S, Vanderborght OLJ (1984) Interference of aluminium and pH on the Na-influx in an aquatic insect Corixa punctata (IIIig.). Bull Environ Contam Toxicol 32(1):575–579. doi:10.1007/BF01607540

  • Wood CM, Randall DJ (1981) Haemolymph gas transport, acid-base regulation, and anaerobic metabolism during exercise in the land crab (Cardisoma carnifex). J Exp Zool 218(1):23–35. doi:10.1002/jez.1402180104

    Article  CAS  Google Scholar 

  • Wootton RJ (1988) The historical ecology of aquatic insects: an overview. Palaeogeogr Palaeoclimatol Palaeoecol 62(1–4):477–492. doi:http://dx.doi.org/10.1016/0031-0182(88)90068-5

  • Wyatt GR, Loughheed TC, Wyatt SS (1956) The chemistry of insect hemolymph: organic components of the hemolymph of the silkworm, Bombyx mori, and two other species. J Gen Physiol 39(6):853–868. doi:10.1085/jgp.39.6.853

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. D. Matthews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Matthews, P.G.D. (2017). Acid–Base Regulation in Insect Haemolymph. In: Weihrauch, D., O’Donnell, M. (eds) Acid-Base Balance and Nitrogen Excretion in Invertebrates. Springer, Cham. https://doi.org/10.1007/978-3-319-39617-0_8

Download citation

Publish with us

Policies and ethics