Advertisement

Energy Landscapes, Tunneling, and Non-adiabatic Effects

  • P. VasaEmail author
  • D. Mathur
Chapter
  • 708 Downloads
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

This chapter introduces the important concept of energy landscapes over which protein dynamics occur. Some of such dynamics occur on ultrafast timescales via quantum mechanical tunneling and by other effects that are distinctly non-adiabatic. Both these facets are considered.

Keywords

High Occupied Molecular Orbital Energy Landscape Ionization Dynamic Tunneling Time Tunneling Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.W. Petrich, C. Poyart, J.L. Martin, Biochemistry 27, 4049 (1988)CrossRefGoogle Scholar
  2. 2.
    M. Levantino, G. Schirò, H.T. Lemke, G. Cottone, J.M. Glownia et al., Nat. Commun. 6, 6772 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    D. Arnlund, L.C. Johansson, C. Wickstrand, A. Barty, G.J.D. Williams et al., Nat. Methods 11, 923 (2014)CrossRefGoogle Scholar
  4. 4.
    D. Leys, N.S. Scrutton, Curr. Opinion Struc. Biol. 14, 642 (2004)CrossRefGoogle Scholar
  5. 5.
    M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Int. J. Biochem. Cell Biol. 39, 44 (2007)CrossRefGoogle Scholar
  6. 6.
    S.I. Rattan, Free Radic. Res. 40, 1230 (2006)CrossRefGoogle Scholar
  7. 7.
    G.U. Nienhaus, R.D. Young, Encyclopedia Appl. Phys. 15, 163 (1996)Google Scholar
  8. 8.
    J. Friedrich, Methods Enzymol. 246, 226 (1995)CrossRefGoogle Scholar
  9. 9.
    J.M. Vanderkooi, P.J. Angiolillo, M. Laberge, Methods Enzymol. 278, 71 (1997)CrossRefGoogle Scholar
  10. 10.
    H. Frauenfelder, A.R. Bishop, A. Garcia, A. Perelson, P. Schuster et al., Physica D 107, 117 (1997)MathSciNetCrossRefGoogle Scholar
  11. 11.
    V.I. Goldanskii, L.I. Trakhtenberg, V.N. Fleurov, Tunneling Phenomena in Chemical Physics (Gordon and Breach, New York, 1989)Google Scholar
  12. 12.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    R.H. Austin, K.W. Beeson, L. Eisenstein, H. Frauenfelder, I.C. Gunsalus, Biochemistry 13, 5355 (1975)CrossRefGoogle Scholar
  14. 14.
    T.S. Li, M.L. Quillin, G.N. Phillips Jr., J.S. Olson, Biochemistry 33, 1433 (1994)CrossRefGoogle Scholar
  15. 15.
    H. Ishikawa, K. Kwak, J.K. Chung, S. Kim, M.D. Fayer, Proc. Natl. Acad. Sci. USA 105, 8619 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    L. Easki, Phys. Rev. 109, 603 (1958)ADSCrossRefGoogle Scholar
  18. 18.
    S. Baker, J.S. Robinson, C.A. Haworth, H. Teng, R.A. Smith et al., Science 312, 424 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    M. Meckel, D. Comtois, D. Zeidler, A. Staudte, D. Pavicic et al., Science 320, 1478 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    H.J. Wörner, J.B. Bertrand, D.V. Kartashov, P.B. Corkum, D.M. Villeneuve, Nature 466, 604 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    G. Orlando, C.R. McDonald, N.H. Protik, G. Vampa, T. Brabec, J. Phys. B 47, 204002 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    D. Shafir, H. Soifer, B.D. Bruner, M. Dagan, Y. Mairesse et al., Nature 485, 343 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    L. Arissian, C. Smeenk, F. Turner, C. Trallero, A.V. Sokolov et al., Phys. Rev. Lett. 105, 133002 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner et al., Science 322, 1525 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    P. Eckle, M. Smolarski, P. Schlup, J. Biegert, A. Staudte et al., Nature Phys. 4, 456 (2008)CrossRefGoogle Scholar
  26. 26.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  27. 27.
    R. Landauer, T. Martin, Rev. Mod. Phys. 66, 217 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Ban, E.Y. Sherman, J.G. Muga, M. Büttiker, Phys. Rev. A 82, 062121 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    F. Krausz, M. Ivanov, M. Yu, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    D.M. Volkov, Z. Physik. 94, 250 (1935)ADSCrossRefGoogle Scholar
  31. 31.
    N.D. Sengupta, Bull. Math. Soc. (Calcutta) 44, 175 (1952)Google Scholar
  32. 32.
    Vachaspati, Phys. Rev. 128, 664 (1962)Google Scholar
  33. 33.
    Z. Fried, Phys. Lett. 3, 349 (1963)ADSCrossRefGoogle Scholar
  34. 34.
    A.I. Nishishov, V.I. Ritus, Sov. Phys. JETP 19, 529 (1964)Google Scholar
  35. 35.
    H.R. Reiss, J. Math. Phys. 3, 59 (1962)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    F.H.M. Faisal, J. Phys. B 6, L89 (1973)ADSCrossRefGoogle Scholar
  37. 37.
    H.R. Reiss, Phys. Rev. A 22, 1786 (1980)ADSCrossRefGoogle Scholar
  38. 38.
    V.P. Krainov, J. Opt. Soc. Am. B 14, 425 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)Google Scholar
  40. 40.
    J. Muth-Bohm, A. Becker, S.L. Chin, F.H.M. Faisal, Chem. Phys. Lett. 337, 313 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    M. Okunishi, K. Shimada, G. Prümper, D. Mathur, K. Ueda, J. Chem. Phys. 127, 064310 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    D. Mathur, A.K. Dharmadhikari, F.A. Rajgara, J.A. Dharmadhikari, Phys. Rev. A. 78, 013405 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    T.D.G. Walsh, F.A. Ilkov, J.E. Decker, S.L. Chin, J. Phys. B 27, 3767 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    I.V. Litvinyuk, K.F. Lee, P.W. Dooley, D.M. Rayner, D.M. Villeneuve, P.B. Corkum, Phys. Rev. Lett. 90, 233003 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    T.K. Kjeldsen, C.Z. Bisgaard, L.B. Madsen, H. Stapelfeldt, Phys. Rev. A 68, 063407 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    M.J. DeWitt, R.J. Levis, J. Chem. Phys. 108, 7739 (1998)ADSCrossRefGoogle Scholar
  47. 47.
    M.J. DeWitt, R.J. Levis, J. Chem. Phys. 110, 11368 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    C. Wu, Y. Xiong, N. Ji, Y. He, Z. Gao, F. Kong, J. Phys. Chem. A 105, 374 (2001)CrossRefGoogle Scholar
  49. 49.
    J.L. Chaloupka, J. Rudati, R. Lafon, P. Agostini, K.C. Kulander, L.F. DiMauro, Phys. Rev. Lett. 90, 033002 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    S.M. Hankin, D.M. Villeneuve, P.B. Corkum, D.M. Rayner, Phys. Rev. A 64, 013405 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    M. Lezius, V. Blanchet, M.Yu. Ivanov, A. Stolow, J. Chem. Phys. 117, 1575 (2002)Google Scholar
  52. 52.
    T. Hatamoto, M. Okunishi, T. Lischke, G. Prümper, K. Shimada et al., Chem. Phys. Lett. 439, 296 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    D. Mathur, T. Hatamoto, M. Okunishi, T. Lischke, G. Prümper et al., J. Phys. Chem. A 111, 9299 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations