Skip to main content

Biomarkers of Oxidative Stress in Human Hypertension

  • Chapter
  • First Online:
Book cover Hypertension and Cardiovascular Disease

Abstract

Hypertension is a major cardiovascular risk factor. Of the many processes involved in the pathophysiology of hypertension, cardiac, vascular and renal damage due to oxidative stress (excess bioavailability of reactive oxygen species (ROS)) is important. Physiologically, ROS regulate cell function through redox-sensitive pathways. In hypertension, oxidative stress promotes endothelial dysfunction, vascular remodeling and inflammation, leading to vascular damage. While experimental evidence indicates a causative role for oxidative stress in hypertension, human data are less convincing. This may relate to sub-optimal approaches to accurately measure ROS in humans. Various methods have been developed to assess the extent and nature of oxidative stress, including markers of protein oxidation, lipid oxidation, and anti-oxidant status. These approaches are, in general, indirect and measure indices of redox state. While large clinical studies to establish whether biomarkers of oxidative stress accurately predict disease risk are still needed, oxidative biomarkers have provided important mechanistic insights regarding redox-sensitive processes of hypertension. Here we briefly describe the importance of ROS in redox signaling and hypertension and discuss biomarkers of oxidative stress in human hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bromfield S, Muntner P. High blood pressure: the leading global burden of disease risk factor and the need for worldwide prevention programs. Curr Hypertens Rep. 2013;15(3):134–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Caillon A, Schiffrin EL. Role of inflammation and immunity in hypertension: recent epidemiological, laboratory, and clinical evidence. Curr Hypertens Rep. 2016;18(3):21.

    Article  PubMed  CAS  Google Scholar 

  3. Montezano AC, Nguyen Dinh Cat A, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16(6):431.

    Article  PubMed  CAS  Google Scholar 

  4. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8(9–10):1865–7.

    Article  CAS  PubMed  Google Scholar 

  6. Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal. 2013;19(10):1110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sahoo S, Meijles DN, Pagano PJ. NADPH oxidases: key modulators in aging and age-related cardiovascular diseases? Clin Sci (Lond). 2016;130(5):317–35.

    Article  CAS  Google Scholar 

  8. Callera GE, Tostes RC, Yogi A, Montezano AC, Touyz RM. Endothelin-1-induced oxidative stress in DOCA-salt hypertension involves NADPH-oxidase-independent mechanisms. Clin Sci (Lond). 2006;110(2):243–53.

    Article  CAS  Google Scholar 

  9. Montezano AC, Dulak-Lis M, Tsiropoulou S, Harvey A, Briones AM, Touyz RM. Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol. 2015;31(5):631–41.

    Article  PubMed  Google Scholar 

  10. De Ciuceis C, Flati V, Rossini C, Rufo A, Porteri E, Di Gregorio J, Petroboni B, La Boria E, Donini C, Pasini E, Agabiti Rosei E, Rizzoni D. Effect of antihypertensive treatments on insulin signalling in lympho-monocytes of essential hypertensive patients: a pilot study. Blood Press. 2014;23(6):330–8.

    Article  PubMed  CAS  Google Scholar 

  11. Rodrigo R, Libuy M, Feliú F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers. 2013;35(6):773–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gómez-Marcos MA, Blázquez-Medela AM, Gamella-Pozuelo L, Recio-Rodriguez JI, García-Ortiz L, Martínez-Salgado C. Serum superoxide dismutase is associated with vascular structure and function in hypertensive and diabetic patients. Oxid Med Cell Longev. 2016;2016:9124676.

    Article  PubMed  Google Scholar 

  13. Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110(10):1364–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lopes RA, Neves KB, Tostes RC, Montezano AC, Touyz RM. Downregulation of nuclear factor erythroid 2-related factor and associated antioxidant genes contributes to redox-sensitive vascular dysfunction in hypertension. Hypertension. 2015;66(6):1240–50.

    CAS  PubMed  Google Scholar 

  15. Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38(3 Pt 2):606–11.

    Article  CAS  PubMed  Google Scholar 

  16. Virdis A, Neves MF, Amiri F, Touyz RM, Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens. 2004;22(3):535–42.

    Article  CAS  PubMed  Google Scholar 

  17. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  CAS  PubMed  Google Scholar 

  18. Tabet F, Schiffrin EL, Callera GE, He Y, Yao G, Ostman A, Kappert K, Tonks NK, Touyz RM. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ Res. 2008;103(2):149–58.

    Article  CAS  PubMed  Google Scholar 

  19. Bruder-Nascimento T, Callera GE, Montezano AC, He Y, Antunes TT, Cat AN, Tostes RC, Touyz RM. Vascular injury in diabetic db/db mice is ameliorated by atorvastatin: role of Rac1/2-sensitive Nox-dependent pathways. Clin Sci (Lond). 2015;128(7):411–23.

    Article  CAS  Google Scholar 

  20. Schöttker B, Saum KU, Jansen EH, Holleczek B, Brenner H. Associations of metabolic, inflammatory and oxidative stress markers with total morbidity and multi-morbidity in a large cohort of older German adults. Age Ageing. 2016;45(1):127–35.

    Article  PubMed  Google Scholar 

  21. Annor FB, Goodman M, Okosun IS, Wilmot DW, Il’yasova D, Ndirangu M, Lakkur S. Oxidative stress, oxidative balance score, and hypertension among a racially diverse population. J Am Soc Hypertens. 2015;9(8):592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20(1):164–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu P, Han W, Villar VA, Yang Y, Lu Q, Lee H, Li F, Quinn MT, Gildea JJ, Felder RA, Jose PA. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol. 2014;2:570–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kröller-Schön S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M, Mikhed Y, Zinssius E, Mader M, Stamm P, Treiber N, Scharffetter-Kochanek K, Li H, Schulz E, Wenzel P, Münzel T, Daiber A. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal. 2014;20(2):247–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schiffrin EL. Antioxidants in hypertension and cardiovascular disease. Mol Interv. 2010;10(6):354–62.

    Article  PubMed  Google Scholar 

  26. Juraschek SP, Guallar E, Appel LJ, Miller 3rd ER. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;95(5):1079–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 3. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J Agric Food Chem. 2016;64(5):1046–70.

    Article  CAS  PubMed  Google Scholar 

  28. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1(1):483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224C:164–75.

    Article  CAS  Google Scholar 

  30. Touyz RM. Reactive oxygen species as mediators of calcium signalling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal. 2005;7(9–10):1302–14.

    Article  CAS  PubMed  Google Scholar 

  31. Tsimikas S. Oxidative biomarkers in the diagnosis and prognosis of cardiovascular disease. Am J Cardiol. 2006;98(11A):9P–17.

    Article  CAS  PubMed  Google Scholar 

  32. Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37.

    Article  CAS  PubMed  Google Scholar 

  33. Holterman CE, Read NC, Kennedy CR. Nox and renal disease. Clin Sci (Lond). 2015;128(8):465–81.

    Article  CAS  Google Scholar 

  34. Montezano AC, Touyz RM. Reactive oxygen species and endothelial function–role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol. 2012;110(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  35. Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: molecular mechanisms of activation. Free Radic Biol Med. 2014;76C:208–26.

    Article  CAS  Google Scholar 

  36. Cachat J, Deffert C, Hugues S, Krause KH. Phagocyte NADPH oxidase and specific immunity. Clin Sci (Lond). 2015;128(10):635–48.

    Article  CAS  Google Scholar 

  37. Chen F, Wang Y, Barman S, Fulton DJ. Enzymatic regulation and functional relevance of NOX5. Curr Pharm Des. 2015;21(41):5999–6008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holterman CE, Thibodeau JF, Towaij C, Gutsol A, Montezano AC, Parks RJ, Cooper ME, Touyz RM, Kennedy CR. Nephropathy and elevated BP in mice with podocyte-specific NADPH oxidase 5 expression. J Am Soc Nephrol. 2014;25(4):784–97.

    Article  CAS  PubMed  Google Scholar 

  39. Touyz RM, Schiffrin EL. Increased generation of superoxide by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients: role of phospholipase D-dependent NAD(P)H oxidase-sensitive pathways. J Hypertens. 2001;19(7):1245–54.

    Article  CAS  PubMed  Google Scholar 

  40. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res. 2002;90(11):1205–13.

    Article  CAS  PubMed  Google Scholar 

  41. Touyz RM, Yao G, Schiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23(6):981–7.

    Article  CAS  PubMed  Google Scholar 

  42. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassègue B, Griendling KK, Harrison DG, Dikalova AE. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal. 2014;20(2):281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gray SP, Di Marco E, Okabe J, Szyndralewiez C, Heitz F, Montezano AC, de Haan JB, Koulis C, El-Osta A, Andrews KL, Chin-Dusting JP, Touyz RM, Wingler K, Cooper ME, Schmidt HH, Jandeleit-Dahm KA. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation. 2013;127(18):1888–902.

    Article  CAS  PubMed  Google Scholar 

  44. Araujo M, Wilcox CS. Oxidative stress in hypertension: role of the kidney. Antioxid Redox Signal. 2014;20(1):74–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maksimenko AV. Experimental antioxidant biotherapy for protection of the vascular wall by modified forms of superoxide dismutase and catalase. Curr Pharm Des. 2005;11(16):2007–16.

    Article  CAS  PubMed  Google Scholar 

  46. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199–218.

    Article  CAS  PubMed  Google Scholar 

  48. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011;32(4–6):234–46.

    Article  CAS  PubMed  Google Scholar 

  49. Howden R. Nrf2 and cardiovascular defense. Oxid Med Cell Longev. 2013;2013:104308.

    PubMed  PubMed Central  Google Scholar 

  50. Wang YY, Yang YX, Zhe H, He ZX, Zhou SF. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des Devel Ther. 2014;8:2075–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomez-Guzman M, Jimenez R, Sanchez M. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med. 2012;52:70–9.

    Article  CAS  PubMed  Google Scholar 

  52. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers Heerspink HJ, McMurray JJ, Meyer CJ, Parving HH, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow GM, BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Chen J, Zhang Z, Cai L. Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes Metab J. 2014;38(5):337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Go YM, Jones DP. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50(4):495–509.

    Article  CAS  PubMed  Google Scholar 

  55. Go YM, Jones DP. Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol. 2013;48(2):173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones DP, Go YM. Redox compartmentalization and cellular stress. Diabetes Obes Metab. 2010;12:116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  58. Lee R, Margaritis M, Channon KM, Antoniades C. Evaluating oxidative stress in human cardiovascular disease: methodological aspects and considerations. Curr Med Chem. 2012;19(16):2504–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yagi K. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol Biol. 1998;108:101–6.

    CAS  PubMed  Google Scholar 

  60. Arai H. Oxidative modification of lipoproteins. Subcell Biochem. 2014;77:103–14.

    Article  CAS  PubMed  Google Scholar 

  61. Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta. 2014;1840(2):809–17.

    Article  CAS  PubMed  Google Scholar 

  62. Bairova TA, Kolesnikov SI, Kolesnikova LI, Pervushina OA, Darenskaya MA, Grebenkina LA. Lipid peroxidation and mitochondrial superoxide dismutase-2 gene in adolescents with essential hypertension. Bull Exp Biol Med. 2014;158(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  63. Spickett CM. The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biol. 2013;1(1):145–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davies SS, Roberts 2nd LJ. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med. 2011;50(5):559–66.

    Article  CAS  PubMed  Google Scholar 

  65. Basu S. Bioactive eicosanoids: role of prostaglandin F(2α) and F2-isoprostanes in inflammation and oxidative stress related pathology. Mol Cells. 2010;30(5):383–91.

    Article  CAS  PubMed  Google Scholar 

  66. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 2005;15(4):316–28.

    Article  PubMed  Google Scholar 

  67. Konukoglu D, Serin O, Turhan MS. Plasma leptin and its relationship with lipid peroxidation and nitric oxide in obese female patients with or without hypertension. Arch Med Res. 2006;37(5):602–6.

    Article  CAS  PubMed  Google Scholar 

  68. da Cruz AC, Petronilho F, Heluany CC, Vuolo F, Miguel SP, Quevedo J, Romano-Silva MA, Dal-Pizzol F. Oxidative stress and aging: correlation with clinical parameters. Aging Clin Exp Res. 2014;26(1):7–12.

    Article  PubMed  Google Scholar 

  69. Campos C, Guzmán R, López-Fernández E, Casado Á. Urinary biomarkers of oxidative/nitrosative stress in healthy smokers. Inhal Toxicol. 2011;23(3):148–56.

    Article  PubMed  CAS  Google Scholar 

  70. Asselin C, Shi Y, Clément R, Tardif JC, Des Rosiers C. Higher circulating 4-hydroxynonenal-protein thioether adducts correlate with more severe diastolic dysfunction in spontaneously hypertensive rats. Redox Rep. 2007;12(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  71. Mali VR, Ning R, Chen J, Yang XP, Xu J, Palaniyandi SS. Impairment of aldehyde dehydrogenase-2 by 4-hydroxy-2-nonenal adduct formation and cardiomyocyte hypertrophy in mice fed a high-fat diet and injected with low-dose streptozotocin. Exp Biol Med. 2014;239(5):610–8.

    Article  CAS  Google Scholar 

  72. Zhang Y, Sano M, Shinmura K, Tamaki K, Katsumata Y, Matsuhashi T, Morizane S, Ito H, Hishiki T, Endo J, Zhou H, Yuasa S, Kaneda R, Suematsu M, Fukuda K. 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. J Mol Cell Cardiol. 2010;49(4):576–86.

    Article  CAS  PubMed  Google Scholar 

  73. Usberti M, Gerardi GM, Gazzotti RM, Benedini S, Archetti S, Sugherini L, Valentini M, Tira P, Bufano G, Albertini A, Di Lorenzo D. Oxidative stress and cardiovascular disease in dialyzed patients. Nephron. 2002;91(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  74. Gerardi G, Usberti M, Martini G, Albertini A, Sugherini L, Pompella A, Di LD. Plasma total antioxidant capacity in hemodialyzed patients and its relationships to other biomarkers of oxidative stress and lipid peroxidation. Clin Chem Lab Med. 2002;40(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  75. Galano JM, Mas E, Barden A, Mori TA, Signorini C, De Felice C, Barrett A, Opere C, Pinot E, Schwedhelm E, Benndorf R, Roy J, Le Guennec JY, Oger C, Durand T. Isoprostanes and neuroprostanes: total synthesis, biological activity and biomarkers of oxidative stress in humans. Prostaglandins Other Lipid Mediat. 2013;107:95–102.

    Article  CAS  PubMed  Google Scholar 

  76. Roberts LJ, Morrow JD. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med. 2000;28(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  77. Bauer J, Ripperger A, Frantz S, Ergün S, Schwedhelm E, Benndorf RA. Pathophysiology of isoprostanes in the cardiovascular system: implications of isoprostane-mediated thromboxane A2 receptor activation. Br J Pharmacol. 2014;171(13):3115–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Praticò D, Dogné JM. Vascular biology of eicosanoids and atherogenesis. Expert Rev Cardiovasc Ther. 2009;7(9):1079–89.

    Article  PubMed  Google Scholar 

  79. Zhang ZJ. Systematic review on the association between F2-isoprostanes and cardiovascular disease. Ann Clin Biochem. 2013;50(Pt 2):108–14.

    Article  CAS  PubMed  Google Scholar 

  80. Liu CK, Lyass A, Larson MG, Massaro JM, Wang N, D’Agostino Sr RB, Benjamin EJ, Murabito JM. Biomarkers of oxidative stress are associated with frailty: the Framingham Offspring Study. Age (Dordr). 2016;38(1):1.

    Article  CAS  Google Scholar 

  81. Pignatelli P, Pastori D, Carnevale R, Farcomeni A, Cangemi R, Nocella C, Bartimoccia S, Vicario T, Saliola M, Lip GY, Violi F. Serum NOX2 and urinary isoprostanes predict vascular events in patients with atrial fibrillation. Thromb Haemost. 2015;113(3):617–24.

    Article  PubMed  Google Scholar 

  82. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32(3–4):307–26.

    Article  CAS  PubMed  Google Scholar 

  83. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases. Trends Mol Med. 2003;9:169–76.

    Article  CAS  PubMed  Google Scholar 

  84. Jones DA, Prior SL, Barry JD, Caplin S, Baxter JN, Stephens JW. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract. 2014;106(3):627–33.

    Article  CAS  PubMed  Google Scholar 

  85. Chen X, Mori T, Guo Q, Hu C, Ohsaki Y, Yoneki Y, Zhu W, Jiang Y, Endo S, Nakayama K, Ogawa S, Nakayama M, Miyata T, Ito S. Carbonyl stress induces hypertension and cardio-renal vascular injury in Dahl salt-sensitive rats. Hypertens Res. 2013;36(4):361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J. 1997;324:1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai Z, Yan LJ. Protein oxidative modifications: beneficial roles in disease and health. J Biochem Pharmacol Res. 2013;1(1):15–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang J, Sevier CS. Formation and reversibility of BiP cysteine oxidation facilitates cell survival during and post oxidative stress. J Biol Chem. 2016;291(14):7541–57. pii: jbc.M115.694810.

    Article  CAS  PubMed  Google Scholar 

  89. Haque A, Andersen JN, Salmeen A, Barford D, Tonks NK. Conformation - sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell. 2011;147(1):185–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, Carroll KS. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol. 2011;8(1):57–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy MP, Krieg T. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail. 2014;16(7):712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pastore A, Piemonte F. Protein glutathionylation in cardiovascular diseases. Int J Mol Sci. 2013;14(10):20845–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 2013;19(6):753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tarrago L, Péterfi Z, Lee BC, Michel T, Gladyshev VN. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol. 2015;11(5):332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Klutho PJ, Pennington SM, Scott JA, Wilson KM, Gu SX, Doddapattar P, Xie L, Venema AN, Zhu LJ, Chauhan AK, Lentz SR, Grumbach IM. Deletion of methionine sulfoxide reductase A does not affect atherothrombosis but promotes neointimal hyperplasia and extracellular signal-regulated kinase 1/2 signaling. Arterioscler Thromb Vasc Biol. 2015;35(12):2594–604.

    Article  CAS  PubMed  Google Scholar 

  96. Subash P, Premagurumurthy K, Sarasabharathi A, Cherian KM. Total antioxidant status and oxidative DNA damage in a South Indian population of essential hypertensives. J Hum Hypertens. 2010;24(7):475–82.

    Article  CAS  PubMed  Google Scholar 

  97. Kim JY, Prouty LA, Fang SC, Rodrigues EG, Magari SR, Modest GA, Christiani DC. Association between fine particulate matter and oxidative DNA damage may be modified in individuals with hypertension. J Occup Environ Med. 2009;51(10):1158–66.

    Article  CAS  PubMed  Google Scholar 

  98. Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta. 2014;1842(9):1502–17.

    Article  CAS  PubMed  Google Scholar 

  99. Bushueva O, Solodilova M, Ivanov V, Polonikov A. Gender-specific protective effect of the -463G > A polymorphism of myeloperoxidase gene against the risk of essential hypertension in Russians. J Am Soc Hypertens. 2015;9(11):902–6.

    Article  CAS  PubMed  Google Scholar 

  100. Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555(Pt 3):589–606.

    Article  CAS  PubMed  Google Scholar 

  101. Cantu-Medellin N, Kelley EE. Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol. 2013;1(1):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang J, Qin T, Chen J, Li Y, Wang L, Huang H, Li J. Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS One. 2014;9(12):e114259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. MacIsaac RL, Salatzki J, Higgins P, Walters MR, Padmanabhan S, Dominiczak AF, Touyz RM, Dawson J. Allopurinol and cardiovascular outcomes in adults with hypertension. Hypertension. 2016;67(3):535–40.

    CAS  PubMed  Google Scholar 

  104. Agarwal V, Hans N, Messerli FH. Effect of allopurinol on blood pressure: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2013;15(6):435–42.

    Article  CAS  Google Scholar 

  105. Maghzal GJ, Krause KH, Stocker R, Jaquet V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic Biol Med. 2012;53(10):1903–18.

    Article  CAS  PubMed  Google Scholar 

  106. Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab. 2014;25(9):452–63.

    Article  CAS  PubMed  Google Scholar 

  107. Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol. 2014;5:285.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Montezano AC, Tsiropoulou S, Dulak-Lis M, Harvey A, Camargo Lde L, Touyz RM. Redox signaling, Nox5 and vascular remodeling in hypertension. Curr Opin Nephrol Hypertens. 2015;24(5):425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes-Pagano E, Freeman BA, Gladwin MT, Pagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med. 2011;51(7):1271–88.

    Article  CAS  PubMed  Google Scholar 

  110. Maxwell S, Greig L. Anti-oxidants- a protective role in cardiovascular disease? Expert Opin Pharmacother. 2001;2(11):1737–50.

    Article  CAS  PubMed  Google Scholar 

  111. Fraga CG, Oteiza PI, Galleano M. In vitro measurements and interpretation of total antioxidant capacity. Biochim Biophys Acta. 2014;1840(2):931–4.

    Article  CAS  PubMed  Google Scholar 

  112. Pinchuk I, Shoval H, Dotan Y, Lichtenberg D. Evaluation of antioxidants: scope, limitations and relevance of assays. Chem Phys Lipids. 2012;165(6):638–47.

    Article  CAS  PubMed  Google Scholar 

  113. Popolo A, Autore G, Pinto A, Marzocco S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic Res. 2013;47(5):346–56.

    Article  CAS  PubMed  Google Scholar 

  114. Hendre AS, Shariff AK, Patil SR, Durgawale PP, Sontakke AV, Suryakar AN. Evaluation of oxidative stress and anti-oxidant status in essential hypertension. J Indian Med Assoc. 2013;111(6):377–8, 380–1.

    PubMed  Google Scholar 

  115. Hollman PC, Cassidy A, Comte B, Heinonen M, Richelle M, Richling E, Serafini M, Scalbert A, Sies H, Vidry S. The biological relevance of direct antioxidant effects of polyphenols for cardiovascular health in humans is not established. J Nutr. 2011;141(5):989S–1009.

    Article  CAS  PubMed  Google Scholar 

  116. González J, Valls N, Brito R, Rodrigo R. Essential hypertension and oxidative stress: new insights. World J Cardiol. 2014;6(6):353–66.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Loukogeorgakis SP, van den Berg MJ, Sofat R, Nitsch D, Charakida M, Haiyee B, de Groot E, MacAllister RJ, Kuijpers TW, Deanfield JE. Role of NADPH oxidase in endothelial ischemia/reperfusion injury in humans. Circulation. 2010;121(21):2310–6.

    Article  CAS  PubMed  Google Scholar 

  118. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The human microcirculation: regulation of flow and beyond. Circ Res. 2016;118(1):157–72.

    Article  CAS  PubMed  Google Scholar 

  119. Caimi G, Mulè G, Hopps E, Carollo C, Lo Presti R. Nitric oxide metabolites and oxidative stress in mild essential hypertension. Clin Hemorheol Microcirc. 2010;46(4):321–5.

    CAS  PubMed  Google Scholar 

  120. Chen K, Xie F, Liu S, Li G, Chen Y, Shi W, Hu H, Liu L, Yin D. Plasma reactive carbonyl species: potential risk factor for hypertension. Free Radic Res. 2011;45(5):568–74.

    Article  CAS  PubMed  Google Scholar 

  121. Chen X, Wu Y, Liu L, Su Y, Peng Y, Jiang L, Liu X. Huang D relationship between high density lipoprotein antioxidant activity and carotid arterial intima-media thickness in patients with essential hypertension. Clin Exp Hypertens. 2010;32(1):13–20.

    Article  PubMed  CAS  Google Scholar 

  122. Brandão SA, Izar MC, Fischer SM, Santos AO, Monteiro CM, Póvoa RM, Helfenstein T, Carvalho AC, Monteiro AM, Ramos E, Gidlund M, Figueiredo Neto AM, Fonseca FA. Early increase in autoantibodies against human oxidized low-density lipoprotein in hypertensive patients after blood pressure control. Am J Hypertens. 2010;23(2):208–14.

    Article  PubMed  CAS  Google Scholar 

  123. Qin Z, Reszka KJ, Fukai T, Weintraub NL. Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Transl Res. 2008;151(2):68–78.

    Article  CAS  PubMed  Google Scholar 

  124. Ahmad A, Singhal U, Hossain MM, Islam N, Rizvi I. The role of the endogenous antioxidant enzymes and malondialdehyde in essential hypertension. J Clin Diagn Res. 2013;7(6):987–90.

    PubMed  PubMed Central  Google Scholar 

  125. Rafiq A, Aslam K, Malik R, Afroze D. C242T polymorphism of the NADPH oxidase p22PHOX gene and its association with endothelial dysfunction in asymptomatic individuals with essential systemic hypertension. Mol Med Rep. 2014;9(5):1857–62.

    CAS  PubMed  Google Scholar 

  126. Qin YW, Peng J, Liang BY, Su L, Chen Q, Xie JJ, Gu L. The A930G polymorphism ofP22phox (CYBA) gene but not C242T variation is associated with hypertension: a meta-analysis. PLoS One. 2013;8(12):e82465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Work from the author’s laboratory was supported by grants 44018 and 57886, from the Canadian Institutes of Health Research (CIHR) and grants from the British Heart Foundation (BHF). RMT is supported through a BHF Chair. ACM is supported through a Leadership Fellowship from the University of Glasgow. MDL is supported through a Marie Curie ITN (RADOX).

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhian M. Touyz M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsiropoulou, S., Dulak-Lis, M., Montezano, A.C., Touyz, R.M. (2016). Biomarkers of Oxidative Stress in Human Hypertension. In: Andreadis, E. (eds) Hypertension and Cardiovascular Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-39599-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39599-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39597-5

  • Online ISBN: 978-3-319-39599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics