Skip to main content

Abstract

Following their release from megakaryocytes, platelets circulate as tiny sentinels of the vasculature. In this capacity, they are equipped with organelles and membrane systems that contribute to many aspects of host defense including hemostasis and thrombosis, inflammation, angiogenesis, and wound healing [1–5]. Prominent in their armory are granules, self-contained vesicular structures that store high concentrations of bioactive cargos. Granule cargos are released from activated platelets in a variety of physiological and pathophysiological settings and function to maintain the integrity of blood vessels [6–9]. The most prominent platelet organelles, dense granules and α-granules, are unique to platelets. However, platelets also contain a number of organelles such as lysosomes and mitochondria that are common to all eukaryotic cells. Although these organelles primarily serve housekeeping functions, there is evidence that they also participate more directly in maintenance of vascular integrity. In addition, as a consequence of its unusual mode of biogenesis, the platelet is endowed with unique membrane systems including the open canalicular system (OCS) and dense tubular system (DTS) that course throughout its interior [10, 11]. These membrane systems also contribute to the function of platelets in host defense. This chapter will provide an overview of platelet contents with a focus on platelet granules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boilard E, Nigrovic PA, Larabee K et al (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327:580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gawaz M (2006) Platelets in the onset of atherosclerosis. Blood Cells Mol Dis 36:206–210

    Article  CAS  PubMed  Google Scholar 

  3. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115:3378–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wagner DD, Burger PC (2003) Platelets in inflammation and thrombosis. Arter Thromb Vasc Biol 23:2131–2137

    Article  CAS  Google Scholar 

  5. Frojmovic MM, Milton JG (1982) Human platelet size, shape, and related functions in health and disease. Physiol Rev 62:185–261

    Article  CAS  PubMed  Google Scholar 

  6. Flaumenhaft R (2003) Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol 23:1152–1160

    Article  CAS  PubMed  Google Scholar 

  7. Whiteheart SW (2011) Platelet granules: surprise packages. Blood 118:1190–1191

    Article  CAS  PubMed  Google Scholar 

  8. Lemons PP, Chen D, Bernstein AM et al (1997) Regulated secretion in platelets: identification of elements of the platelet exocytosis machinery. Blood 90:1490–1500

    CAS  PubMed  Google Scholar 

  9. King SM, Reed GL (2002) Development of platelet secretory granules. Semin Cell Dev Biol 13:293–302

    Article  CAS  PubMed  Google Scholar 

  10. White JG (2004) Medich giant platelet disorder: a unique alpha granule deficiency I. Structural abnormalities. Platelets 15:345–353

    Article  CAS  PubMed  Google Scholar 

  11. White JG, Key NS, King R a, Vercellotti GM (2005) A “touch” of the white platelet syndrome. Platelets 16:346–361

    Article  CAS  PubMed  Google Scholar 

  12. Wright JH (1910) The histogenesis of the blood platelets. Publ Mass Gen Hosp 3:1–16

    CAS  Google Scholar 

  13. Tranzer JP, Da Prada M, Pletscher A (1966) Ultrastructural localization of 5-hydroxytryptamine in blood platelets. Nature 212:1574–1575

    Article  CAS  PubMed  Google Scholar 

  14. Siegel A, Luscher EF (1967) Non-identity of the alpha-granules of human blood platelets with typical lysosomes. Nature 215:745–747

    Article  CAS  PubMed  Google Scholar 

  15. Bentfeld-Barker ME, Bainton DF (1982) Identification of primary lysosomes in human megakaryocytes and platelets. Blood 59:472–481

    CAS  PubMed  Google Scholar 

  16. Raposo G, Marks MS, Cutler DF (2007) Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr Opin Cell Biol 19:394–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gerrard JM, Rao GH, White JG (1977) The influence of reserpine and ethylenediaminetetraacetic acid (EDTA) on serotonin storage organelles of blood platelets. Am J Pathol 87:633–646

    CAS  PubMed  PubMed Central  Google Scholar 

  18. White JG, Gerrard JM (1978) Recent advances in platelet structural physiology. Suppl Thromb Haemost 63:49–60

    CAS  PubMed  Google Scholar 

  19. Amesse LS, Pfaff-Amesse T, Gunning WT et al (2013) Clinical and laboratory characteristics of adolescents with platelet function disorders and heavy menstrual bleeding. Exp Hematol Oncol 2:3–12

    Article  PubMed  PubMed Central  Google Scholar 

  20. Van Nispen tot Pannerden H, de Haas F, Geerts W et al (2010) The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes. Blood 116:1147–1156

    Article  CAS  PubMed  Google Scholar 

  21. Dean GE, Fishkes H, Nelson PJ, Rudnick G (1984) The hydrogen ion-pumping adenosine triphosphatase of platelet dense granule membrane. Differences from F1F0- and phosphoenzyme-type ATPases. J Biol Chem 259:9569–9574

    CAS  PubMed  Google Scholar 

  22. Carty SE, Johnson RG, Scarpa A (1981) Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient. J Biol Chem 256:11244–11250

    CAS  PubMed  Google Scholar 

  23. Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257

    Article  CAS  PubMed  Google Scholar 

  24. Fukami MH, Holmsen H, Ugurbil K (1984) Histamine uptake in pig platelets and isolated dense granules. Biochem Pharmacol 33:3869–3874

    Article  CAS  PubMed  Google Scholar 

  25. Coller BS, Beer JH, Scudder LE, Steinberg MH (1989) Collagen-platelet interactions: evidence for a direct interaction of collagen with platelet GPIa/IIa and an indirect interaction with platelet GPIIb/IIIa mediated by adhesive proteins. Blood 74:182–192

    CAS  PubMed  Google Scholar 

  26. Farndale RW, Siljander PR, Onley DJ et al (2003) Collagen-platelet interactions: recognition and signalling. Biochem Soc Symp 70:81–94

    Article  CAS  Google Scholar 

  27. Zhu J, Choi W-S, McCoy JG et al (2012) Structure-guided design of a high-affinity platelet integrin IIb 3 receptor antagonist that disrupts Mg2+ binding to the MIDAS. Sci Transl Med 4:125ra32–125ra32

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lages B, Weiss HJ (1999) Secreted dense granule adenine nucleotides promote calcium influx and the maintenance of elevated cytosolic calcium levels in stimulated human platelets. Thromb Haemost 81:286–292

    CAS  PubMed  Google Scholar 

  29. Holmsen H, Dangelmaier CA (1989) Measurement of secretion of serotonin. Methods Enzymol 169:195–205

    Article  CAS  PubMed  Google Scholar 

  30. Holmsen H, Weiss HJ (1979) Secretable storage pools in platelets. Annu Rev Med 30:119–134

    Article  CAS  PubMed  Google Scholar 

  31. Jedlitschky G, Tirschmann K, Lubenow LE et al (2004) The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood 104:3603–3610

    Article  CAS  PubMed  Google Scholar 

  32. Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H et al (2005) Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 37:253–278

    Article  CAS  PubMed  Google Scholar 

  33. Oevermann L, Scheitz J, Starke K et al (2009) Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int J Cancer 124:2303–2311

    Article  CAS  PubMed  Google Scholar 

  34. Moro MA, Russel RJ, Cellek S et al (1996) cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A 93:1480–1485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Liefferinge J, Massie A, Portelli J et al (2013) Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy? Front Cell Neurosci 7:139–163

    PubMed  PubMed Central  Google Scholar 

  36. Sawada K, Echigo N, Juge N et al (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rose SD, Lejen T, Casaletti L et al (2002) Molecular motors involved in chromaffin cell secretion. Ann N Y Acad Sci 971:222–231

    Article  CAS  PubMed  Google Scholar 

  38. Fitch-Tewfik JL, Flaumenhaft R (2013) Platelet granule exocytosis: a comparison with chromaffin cells. Front Endocrinol (Lausanne) 4:77–86

    Google Scholar 

  39. Hiasa M, Togawa N, Miyaji T et al (2014) Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets. Physiol Rep 2:1–14

    Article  CAS  Google Scholar 

  40. Andre P, Delaney SM, LaRocca T et al (2003) P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest 112:398–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner NA, Moake JL, McIntire LV (2001) Blockade of adenosine diphosphate receptors P2Y(12) and P2Y(1) is required to inhibit platelet aggregation in whole blood under flow. Blood 98:3340–3345

    Article  CAS  PubMed  Google Scholar 

  42. Foster CJ, Prosser DM, Agans JM et al (2001) Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest 107:1591–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morrissey JH, Choi SH, Smith SA (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119:5972–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muller F, Mutch NJ, Schenk WA et al (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ghosh S, Shukla D, Suman K et al (2013) Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 122:1478–1486

    Article  CAS  PubMed  Google Scholar 

  46. Smith SA, Mutch NJ, Baskar D et al (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 103:903–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ge S, Wittenberg NJ, Haynes CL (2008) Quantitative and real-time detection of secretion of chemical messengers from individual platelets. Biochemistry 47:7020–7024

    Article  CAS  PubMed  Google Scholar 

  48. Ge S, White JG, Haynes CL (2009) Quantal release of serotonin from platelets. Anal Chem 81:2935–2943

    Article  CAS  PubMed  Google Scholar 

  49. Leitner B, Lovisetti-Scamihorn P, Heilmann J et al (1999) Subcellular localization of chromogranins, calcium channels, amine carriers, and proteins of the exocytotic machinery in bovine splenic nerve. J Neurochem 72:1110–1116

    Article  CAS  PubMed  Google Scholar 

  50. Tharmapathy P, Fukami MH, Holmsen H (2000) The stimulatory effects of cationic amphiphilic drugs on human platelets treated with thrombin. Biochem Pharmacol 60:1267–1277

    Article  CAS  PubMed  Google Scholar 

  51. Holland JM (1976) Serotonin deficiency and prolonged bleeding in beige mice. Proc Soc Exp Biol Med 151:32–39

    Article  CAS  PubMed  Google Scholar 

  52. Malyszko J, Malyszko JS, Pawlak D et al (1996) Hemostasis, platelet function and serotonin in acute and chronic renal failure. Thromb Res 83:351–361

    Article  CAS  PubMed  Google Scholar 

  53. Sauer WH, Berlin JA, Kimmel SE (2003) Effect of antidepressants and their relative affinity for the serotonin transporter on the risk of myocardial infarction. Circulation 108:32–36

    Article  CAS  PubMed  Google Scholar 

  54. Golino P, Crea F, Willerson JT (2002) How to study the effects of platelet aggregation and thrombosis on coronary vasomotion and their clinical relevance. Ital Heart J 3:220–225

    PubMed  Google Scholar 

  55. Ambrosio AL, Boyle JA, Di Pietro SM (2012) Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood 120:4072–4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waites CL, Mehta A, Tan PK et al (2001) An acidic motif retains vesicular monoamine transporter 2 on large dense core vesicles. J Cell Biol 152:1159–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Van der Zee PM, Biro E, Ko Y et al (2006) P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 52:657–664

    Article  PubMed  CAS  Google Scholar 

  58. Israels SJ, McMillan-Ward EM, Easton J et al (2001) CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost 85:134–141

    CAS  PubMed  Google Scholar 

  59. Israels SJ, McMillan-Ward EM (2007) Platelet tetraspanin complexes and their association with lipid rafts. Thromb Haemost 98:1081–1087

    CAS  PubMed  Google Scholar 

  60. Youssefian T, Masse JM, Rendu F et al (1997) Platelet and megakaryocyte dense granules contain glycoproteins Ib and IIb-IIIa. Blood 89:4047–4057

    CAS  PubMed  Google Scholar 

  61. Blair P, Flaumenhaft R (2009) Platelet alpha-granules: basic biology and clinical correlates. Blood Rev 23:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Harrison P, Cramer EM (1993) Platelet alpha-granules. Blood Rev 7:52–62

    Article  CAS  PubMed  Google Scholar 

  63. Sehgal S, Storrie B (2007) Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 5:2009–2016

    Article  CAS  PubMed  Google Scholar 

  64. Grinstein S, Furuya W (1983) The electrochemical H+ gradient of platelet secretory alpha-granules. Contribution of a H+ pump and a Donnan potential. J Biol Chem 258:7876–7882

    CAS  PubMed  Google Scholar 

  65. Grinstein S, Vander Meulen J, Furuya W (1982) Possible role of H+--alkali cation countertransport in secretory granule swelling during exocytosis. FEBS Lett 148:1–4

    Article  CAS  PubMed  Google Scholar 

  66. Grinstein S, Furuya W, Vander Meulen J, Hancock RG (1983) The total and free concentrations of Ca2+ and Mg2+ inside platelet secretory granules. Measurements employing a novel double null point technique. J Biol Chem 258:14774–14777

    CAS  PubMed  Google Scholar 

  67. Coppinger JA, Cagney G, Toomey S et al (2004) Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 103:2096–2104

    Article  CAS  PubMed  Google Scholar 

  68. Maynard DM, Heijnen HFG, Horne MK et al (2007) Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost 5:1945–1955

    Article  CAS  PubMed  Google Scholar 

  69. Maynard DM, Heijnen HF, Gahl WA, Gunay-Aygun M (2010) The alpha granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 8:1786–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burkhart JM, Gambaryan S, Watson SP et al (2014) What can proteomics tell us about platelets? Circ Res 114:1204–1219

    Article  CAS  PubMed  Google Scholar 

  71. Peterson JE, Zurakowski D, Italiano JE et al (2010) Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol 85:487–493

    Article  CAS  PubMed  Google Scholar 

  72. Gunay-Aygun M, Zivony-Elboum Y, Gumruk F et al (2010) Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 116:4990–5001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gunay-Aygun M, Falik-Zaccai TC, Vilboux T et al (2011) NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet alpha-granules. Nat Genet 43:732–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Levy-Toledano S, Caen JP, Breton-Gorius J et al (1981) Gray platelet syndrome: alpha-granule deficiency. Its influence on platelet function. J Lab Clin Med 98:831–848

    CAS  PubMed  Google Scholar 

  75. Swank RT, Reddington M, Novak EK (1996) Inherited prolonged bleeding time and platelet storage pool deficiency in the subtle gray (sut) mouse. Lab Anim Sci 46:56–60

    CAS  PubMed  Google Scholar 

  76. Gerrard JM, Phillips DR, Rao GH et al (1980) Biochemical studies of two patients with the gray platelet syndrome. Selective deficiency of platelet alpha granules. J Clin Invest 66:102–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nurden AT, Nurden P (2007) The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 21:21–36

    Article  CAS  PubMed  Google Scholar 

  78. Deppermann C, Cherpokova D, Nurden P et al (2013) Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest 123:3331–3342

    Article  CAS  PubMed Central  Google Scholar 

  79. Kahr WHA, Lo RW, Li L et al (2013) Abnormal megakaryocyte development and platelet function in Nbeal2-/- mice. Blood 122:3349–3358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Italiano JE, Battinelli EM (2009) Selective sorting of alpha-granule proteins. J Thromb Haemost 7:173–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Italiano JE, Richardson JL, Patel-Hett S et al (2008) Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet granules and differentially released. Blood 111:1227–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jonnalagadda D, Izu LT, Whiteheart SW (2012) Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 120:5209–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Semple JW, Freedman J (2010) Platelets and innate immunity. Cell Mol Life Sci 67:499–511

    Article  CAS  PubMed  Google Scholar 

  84. Semple JW, Italiano JE, Freedman J (2011) Platelets and the immune continuum. Nat Rev Immunol 11:264–274

    Article  CAS  PubMed  Google Scholar 

  85. Von Hundelshausen P, Koenen RR, Weber C (2009) Platelet-mediated enhancement of leukocyte adhesion. Microcirculation 16:84–96

    Article  CAS  Google Scholar 

  86. Von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100:27–40

    Article  CAS  Google Scholar 

  87. Schenk BI, Petersen F, Flad HD, Brandt E (2002) Platelet-derived chemokines CXC chemokine ligand (CXCL)7, connective tissue-activating peptide III, and CXCL4 differentially affect and cross-regulate neutrophil adhesion and transendothelial migration. J Immunol 169:2602–2610

    Article  CAS  PubMed  Google Scholar 

  88. Massberg S, Konrad I, Schurzinger K et al (2006) Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 203:1221–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koenen RR, von Hundelshausen P, Nesmelova IV et al (2009) Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15:97–103

    Article  CAS  PubMed  Google Scholar 

  90. Peerschke EIB, Yin W, Ghebrehiwet B (2008) Platelet mediated complement activation. Adv Exp Med Biol 632:81–91

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McMorran BJ, Marshall VM, de Graaf C et al (2009) Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323:797–800

    Article  CAS  PubMed  Google Scholar 

  92. Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926

    Article  CAS  PubMed  Google Scholar 

  93. Love MS, Millholland MG, Mishra S et al (2012) Platelet factor 4 activity against P. Falciparum and its translation to nonpeptidic mimics as antimalarials. Cell Host Microbe 12:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Slungaard A (2005) Platelet factor 4: a chemokine enigma. Int J Biochem Cell Biol 37:1162–1167

    Article  CAS  PubMed  Google Scholar 

  95. El Golli N, Issertial O, Rosa JP, Briquet-Laugier V (2005) Evidence for a granule targeting sequence within platelet factor 4. J Biol Chem 280:30329–30335

    Article  PubMed  CAS  Google Scholar 

  96. Bikfalvi A (2004) Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost 30:379–385

    Article  CAS  PubMed  Google Scholar 

  97. Peterson JE, Zurakowski D, Italiano JE et al (2012) VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 15:265–273

    Article  CAS  PubMed  Google Scholar 

  98. Krauel K, Weber C, Brandt S et al (2012) Platelet factor 4 binding to lipid A of Gram-negative bacteria exposes PF4/heparin-like epitopes. Blood 120:3345–3352

    Article  CAS  PubMed  Google Scholar 

  99. Vandercappellen J, Van Damme J, Struyf S (2011) The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev 22:1–18

    Article  CAS  PubMed  Google Scholar 

  100. Gralnick HR, Williams SB, McKeown LP et al (1985) Platelet von Willebrand factor: comparison with plasma von Willebrand factor. Thromb Res 38:623–633

    Article  CAS  PubMed  Google Scholar 

  101. Denis C (2002) Molecular and cellular biology of von Willebrand factor. Int J Hematol 75:3–8

    Article  CAS  PubMed  Google Scholar 

  102. Wagner DD, Saffaripour S, Bonfanti R et al (1991) Induction of specific storage organelles by von Willebrand factor propolypeptide. Cell 64:403–413

    Article  CAS  PubMed  Google Scholar 

  103. Titani K, Kumar S, Takio K et al (1986) Amino acid sequence of human von Willebrand factor. Biochemistry 25:3171–3184

    Article  CAS  PubMed  Google Scholar 

  104. Kanaji S, Fahs S a, Shi Q et al (2012) Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost 10:1646–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. McGrath RT, van den Biggelaar M, Byrne B et al (2013) Altered glycosylation of platelet-derived von Willebrand factor confers resistance to ADAMTS13 proteolysis. Blood 122:4107–4110

    Article  CAS  PubMed  Google Scholar 

  106. Bowie EJ, Solberg LA Jr, Fass DN et al (1986) Transplantation of normal bone marrow into a pig with severe von Willebrand’s disease. J Clin Invest 78:26–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De Meyer SF, Vandeputte N, Pareyn I et al (2008) Restoration of plasma von Willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von Willebrand disease. Arter Thromb Vasc Biol 28:1621–1626

    Article  CAS  Google Scholar 

  108. Mann KG, Kalafatis M (2003) Factor V: a combination of Dr Jekyll and Mr Hyde. Blood 101:20–30

    Article  CAS  PubMed  Google Scholar 

  109. Jeimy SB, Tasneem S, Cramer EM, Hayward CP (2008) Multimerin 1. Platelets 19:83–95

    Article  CAS  PubMed  Google Scholar 

  110. Jeimy SB, Fuller N, Tasneem S et al (2008) Multimerin 1 binds factor V and activated factor V with high affinity and inhibits thrombin generation. Thromb Haemost 100:1058–1067

    CAS  PubMed  Google Scholar 

  111. Hayward CP, Furmaniak-Kazmierczak E, Cieutat AM et al (1995) Factor V is complexed with multimerin in resting platelet lysates and colocalizes with multimerin in platelet alpha-granules. J Biol Chem 270:19217–19224

    Article  CAS  PubMed  Google Scholar 

  112. Hayward CPM, Fuller N, Zheng S et al (2004) Human platelets contain forms of factor V in disulfide-linkage with multimerin. Thromb Haemost 92:1349–1357

    CAS  PubMed  Google Scholar 

  113. Hayward CPM, Weiss HJ, Lages B et al (2001) The storage defects in grey platelet syndrome and αδ-storage pool deficiency affect α-granule factor V and multimerin storage without altering their proteolytic processing. Br J Haematol 113:871–877

    Article  CAS  PubMed  Google Scholar 

  114. Hayward CPM, Warkentin TE, Horsewood P, Kelton JG (2015) Multimerin: a series of large disulfide-linked multimeric proteins within platelets. Blood 77:2556–2560

    Google Scholar 

  115. Koedam J a, Cramer EM, Briend E et al (1992) P-selectin, a granule membrane protein of platelets and endothelial cells, follows the regulated secretory pathway in AtT-20 cells. J Cell Biol 116:617–625

    Article  CAS  PubMed  Google Scholar 

  116. Furie B, Furie BC, Flaumenhaft R (2001) A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 86:214–221

    CAS  PubMed  Google Scholar 

  117. Hrachovinova I, Cambien B, Hafezi-Moghadam A et al (2003) Interaction of P-selectin and PSGL-1 generates microparticles that correct hemostasis in a mouse model of hemophilia A. Nat Med 9:1020–1025

    Article  CAS  PubMed  Google Scholar 

  118. Singbartl K, Forlow SB, Ley K (2001) Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure. FASEB J 15:2337–2344

    Article  CAS  PubMed  Google Scholar 

  119. Palabrica T, Lobb R, Furie BC et al (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359:848–851

    Article  CAS  PubMed  Google Scholar 

  120. Yokoyama S, Ikeda H, Haramaki N et al (2005) Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J Am Coll Cardiol 45:1280–1286

    Article  CAS  PubMed  Google Scholar 

  121. Mayadas TN, Johnson RC, Rayburn H et al (1993) Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74:541–554

    Article  CAS  PubMed  Google Scholar 

  122. Holmsen H, Day HJ (1968) Thrombin-induced platelet release reaction and platelet lysosomes. Nature 219:760–761

    Article  CAS  PubMed  Google Scholar 

  123. Ciferri S, Emiliani C, Guglielmini G et al (2000) Platelets release their lysosomal content in vivo in humans upon activation. Thromb Haemost 83:157–164

    CAS  PubMed  Google Scholar 

  124. Rendu F, Brohard-Bohn B (2001) The platelet release reaction: granules’ constituents, secretion and functions. Platelets 12:261–273

    Article  CAS  PubMed  Google Scholar 

  125. White JG, Clawson CC (1980) The surface-connected canalicular system of blood platelets – a fenestrated membrane system. Am J Pathol 101:353–364

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Escolar G, Leistikow E, White JG (1989) The fate of the open canalicular system in surface and suspension-activated platelets. Blood e74:1983–1988

    Google Scholar 

  127. Escolar G, White JG (1991) The platelet open canalicular system: a final common pathway. Blood Cells 17:467–495

    CAS  PubMed  Google Scholar 

  128. Choi W, Karim ZA, Whiteheart SW (2010) Protein expression in platelets from six species that differ in their open canalicular system. Platelets 21:167–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Flaumenhaft R, Rozenvayn N, Feng D, Dvorak AM (2007) SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood 110:1492–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. White JG (2005) Platelets are covercytes, not phagocytes: uptake of bacteria involves channels of the open canalicular system. Platelets 16:121–131

    Article  CAS  PubMed  Google Scholar 

  131. Ebbeling L, Robertson C, McNicol a, Gerrard JM (1992) Rapid ultrastructural changes in the dense tubular system following platelet activation. Blood 80:718–723

    CAS  PubMed  Google Scholar 

  132. Yarom R, Lijovetzky G, Havivi Y (1981) Platelet heterogeneity and dense tubular system changes on activation. Experientia 37:96–98

    Article  CAS  PubMed  Google Scholar 

  133. Kovàcs T, Berger G, Corvazier E et al (1997) Immunolocalization of the multi-sarco/endoplasmic reticulum Ca2+ ATPase system in human platelets. Br J Haematol 97:192–203

    Article  PubMed  Google Scholar 

  134. Shuster RC, Rubenstein AJ, Wallace DC (1988) Mitochondrial DNA in anucleate human blood cells. Biochem Biophys Res Commun 155:1360–1365

    Article  CAS  PubMed  Google Scholar 

  135. Choo HJ, Saafir TB, Mkumba L et al (2012) Mitochondrial calcium and reactive oxygen species regulate agonist-initiated platelet phosphatidylserine exposure. Arterioscler Thromb Vasc Biol 32:2946–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Verhoeven AJ, Verhaar R, Gouwerok EG, de Korte D (2005) The mitochondrial membrane potential in human platelets: a sensitive parameter for platelet quality. Transfusion 45:82–89

    Article  PubMed  Google Scholar 

  137. Fukami MH, Salganicoff L (1973) Isolation and properties of human platelet mitochondria. Blood 42:913–918

    CAS  PubMed  Google Scholar 

  138. Koseoglu S, Dilks JR, Peters CG et al (2013) Dynamin-related protein-1 controls fusion pore dynamics during platelet granule exocytosis. Arterioscler Thromb Vasc Biol 33:481–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bhandari V, Choo-Wing R, Lee CG et al (2006) Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 12:1286–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Serve O, Kamiya Y, Maeno A et al (2010) Redox-dependent domain rearrangement of protein disulfide isomerase coupled with exposure of its substrate-binding hydrophobic surface. J Mol Biol 396:361–374

    Article  CAS  PubMed  Google Scholar 

  141. Dale GL, Remenyi G, Friese P (2005) Quantitation of microparticles released from coated-platelets. J Thromb Haemost 3:2081–2088

    Article  CAS  PubMed  Google Scholar 

  142. Jobe SM, Wilson KM, Leo L et al (2008) Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis. Blood 111:1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Garcia-Souza LF, Oliveira MF (2014) Mitochondria: biological roles in platelet physiology and pathology. Int J Biochem Cell Biol 50:156–160

    Article  CAS  PubMed  Google Scholar 

  144. Kile BT (2014) The role of apoptosis in megakaryocytes and platelets. Br J Haematol 165:217–226

    Article  CAS  PubMed  Google Scholar 

  145. Mason KD, Carpinelli MR, Fletcher JI et al (2007) Programmed anuclear cell death delimits platelet life span. Cell 128:1173–1186

    Article  CAS  PubMed  Google Scholar 

  146. White JG (1979) Ultrastructural studies of the gray platelet syndrome. Am J Pathol 95:445–462

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Thon JN, Peters CG, Machlus KR et al (2012) T granules in human platelets function in TLR9 organization and signaling. J Cell Biol 198:561–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jasuja R, Passam FH, Kennedy DR et al (2012) Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J Clin Invest 122:2104–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Richardson JL, Shivdasani RA, Boers C et al (2005) Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 106:4066–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ren Q, Ye S, Whiteheart SW (2008) The platelet release reaction: just when you thought platelet secretion was simple. Curr Opin Hematol 15:537–541

    Article  PubMed  PubMed Central  Google Scholar 

  151. Graham GJ, Ren Q, Dilks JR et al (2009) Endobrevin/VAMP-8-dependent dense granule release mediates thrombus formation in vivo. Blood 114:1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Woronowicz K, Dilks JR, Rozenvayn N et al (2010) The platelet actin cytoskeleton associates with SNAREs and participates in alpha-granule secretion. Biochemistry 49:4533–4542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rozenvayn N, Flaumenhaft R (2001) Phosphatidylinositol 4,5-bisphosphate mediates Ca2+-induced platelet alpha-granule secretion. Evidence for type II phosphatidylinositol 5-phosphate 4-kinase function. J Biol Chem 276:22410–22419

    Article  CAS  PubMed  Google Scholar 

  154. Rozenvayn N, Flaumenhaft R (2003) Protein kinase C mediates translocation of type II phosphatidylinositol 5-phosphate 4-kinase required for platelet alpha-granule secretion. J Biol Chem 278:8126–8134

    Article  CAS  PubMed  Google Scholar 

  155. Feng D, Flaumenhaft R, Bandeira-Melo C et al (2001) Ultrastructural localization of vesicle-associated membrane protein(s) to specialized membrane structures in human pericytes, vascular smooth muscle cells, endothelial cells, neutrophils, and eosinophils. J Histochem Cytochem 49:293–304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by HL112809, HL125275, and HL112302 from NHLBI. The author would like to acknowledge the many significant contributions to the field of platelet granule secretion that were not cited in this chapter owing to space limitations.

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Flaumenhaft MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flaumenhaft, R., Koseoglu, S. (2016). Platelet Contents. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_6

Download citation

Publish with us

Policies and ethics