Skip to main content

Morphogenesis of Platelets in the Circulation

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

Platelets are defined as terminally differentiated cells incapable of more complex cell processes like cell division or fission processes. Therefore, megakaryocytes are viewed as the only parent cell producing mature platelets. Nevertheless, the cellular fragments, termed proplatelet extension, released by the megakaryocytes exceed platelet dimension, leaving the question if further maturation of platelets in the blood stream is a potential concept of platelet formation. In this chapter we will review established and emerging findings relevant to platelet morphogenesis in the circulation. Furthermore, some of the known regulatory mechanisms involved will be discussed and useful methods and tool to study platelet morphogenesis will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Italiano JE Jr, Lecine P, Shivdasani RA, Hartwig JH (1999) Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol 147(6):1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geddis AE, Kaushansky K (2007) Immunology. The root of platelet production. Science 317(5845):1689–1691

    Article  CAS  PubMed  Google Scholar 

  3. Junt T, Schulze H, Chen Z et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770

    Article  CAS  PubMed  Google Scholar 

  4. Kowata S, Isogai S, Murai K et al (2014) Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thromb Haemost 112(4):743–756

    Article  PubMed  Google Scholar 

  5. Zhang L, Orban M, Lorenz M et al (2012) A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J Exp Med 209(12):2165–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thon JN, Montalvo A, Patel-Hett S et al (2010) Cytoskeletal mechanics of proplatelet maturation and platelet release. J Cell Biol 191(4):861–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Behnke O, Forer A (1998) From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. Eur J Haematol Suppl 61:3–23

    CAS  PubMed  Google Scholar 

  8. Schwertz H, Koster S, Kahr WH et al (2010) Anucleate platelets generate progeny. Blood 115(18):3801–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Behnke O (1993) The Formation of Fusiform Proplatelets and their Transformation to Discoid Platelets. Platelets 4(5):262–267

    Article  CAS  PubMed  Google Scholar 

  10. Handagama PJ, Feldman BF, Jain NC, Farver TB, Kono CS (1987) Circulating proplatelets: isolation and quantitation in healthy rats and in rats with induced acute blood loss. Am J Vet Res 48(6):962–965

    CAS  PubMed  Google Scholar 

  11. Tong M, Seth P, Penington DG (1987) Proplatelets and stress platelets. Blood 69(2):522–528

    CAS  PubMed  Google Scholar 

  12. Smith CM 2nd, Burris SM, White JG (1990) High frequency of elongated platelet forms in guinea pig blood: ultrastructure and resistance to micropipette aspiration. J Lab Clin Med 115(6):729–737

    PubMed  Google Scholar 

  13. Handagama P, Jain NC, Kono CS, Feldman BF (1986) Scanning electron microscopic studies of megakaryocytes and platelet formation in the dog and rat. Am J Vet Res 47(11):2454–2460

    CAS  PubMed  Google Scholar 

  14. Italiano JE Jr, Shivdasani RA (2003) Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost 1(6):1174–1182

    Article  CAS  PubMed  Google Scholar 

  15. Hartwig JH (2006) The platelet: form and function. Semin Hematol 43(1 Suppl 1):S94–S100

    Article  CAS  PubMed  Google Scholar 

  16. Thon JN, Macleod H, Begonja AJ et al (2012) Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 3:852

    Article  PubMed  Google Scholar 

  17. Bender M, Thon JN, Ehrlicher AJ et al (2015) Microtubule sliding drives proplatelet elongation and is dependent on cytoplasmic dynein. Blood 125(5):860–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schmitt A, Guichard J, Masse JM, Debili N, Cramer EM (2001) Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. Exp Hematol 29(11):1295–1302

    Article  CAS  PubMed  Google Scholar 

  19. Italiano J Jr, Hartwig JH (2007) Megakaryocyte development and platelet formation. In: Michelson AD (ed) Platelets. Elsevier, San Diego, pp 23–44

    Chapter  Google Scholar 

  20. Italiano JE Jr, Patel-Hett S, Hartwig JH (2007) Mechanics of proplatelet elaboration. J Thromb Haemost 5(Suppl 1):18–23

    Article  CAS  PubMed  Google Scholar 

  21. Stenberg PE, Levin J (1989) Mechanisms of platelet production. Blood Cells 15(1):23–47

    CAS  PubMed  Google Scholar 

  22. Radley JM, Hartshorn MA (1987) Megakaryocyte fragments and the microtubule coil. Blood Cells 12(3):603–614

    CAS  PubMed  Google Scholar 

  23. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81(11):2844–2853

    CAS  PubMed  Google Scholar 

  24. Weyrich AS, Zimmerman GA (2013) Platelets in lung biology. Annu Rev Physiol 75:569–591

    Article  CAS  PubMed  Google Scholar 

  25. Pedersen NT (1974) The pulmonary vessels as a filter for circulating megakaryocytes in rats. Scand J Haematol 13(3):225–231

    Article  CAS  PubMed  Google Scholar 

  26. Aschoff L (1893) Ueber capillare Embolien von niesenkernhaltigen Zellen. Arch Pathol Anat Phys 134:11–14

    Google Scholar 

  27. Italiano JE, Hartwig JH (2013) Megakaryocyte Development and Platelet Formation, 3rd edn. Academic Press, London/Waltham

    Google Scholar 

  28. Tavassoli M, Aoki M (1981) Migration of entire megakaryocytes through the marrow–blood barrier. Br J Haematol 48(1):25–29

    Article  CAS  PubMed  Google Scholar 

  29. Avraham H, Cowley S, Chi SY, Jiang S, Groopman JE (1993) Characterization of adhesive interactions between human endothelial cells and megakaryocytes. J Clin Invest 91(6):2378–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bozza FA, Shah AM, Weyrich AS, Zimmerman GA (2009) Amicus or adversary: platelets in lung biology, acute injury, and inflammation. Am J Respir Cell Mol Biol 40(2):123–134

    Article  CAS  PubMed  Google Scholar 

  31. Nicolls MR, Tamosiuniene T, Babu AN, Voelkel NF (2009) Interactions of pulmonary endothelial cells with immune cells and platelets: implications for disease pathogenesis. Wiley, Chichester/Hoboken

    Google Scholar 

  32. Howell WH, Donahue DD (1937) The production of blood platelets in the lungs. J Exp Med 65(2):177–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis RE, Stenberg PE, Levin J, Beckstead JH (1997) Localization of megakaryocytes in normal mice and following administration of platelet antiserum, 5-fluorouracil, or radiostrontium: evidence for the site of platelet production. Exp Hematol 25(7):638–648

    CAS  PubMed  Google Scholar 

  34. Zucker-Franklin D, Philipp CS (2000) Platelet production in the pulmonary capillary bed: new ultrastructural evidence for an old concept. Am J Pathol 157(1):69–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandal RV, Mark EJ, Kradin RL (2007) Megakaryocytes and platelet homeostasis in diffuse alveolar damage. Exp Mol Pathol 83(3):327–331

    Article  CAS  PubMed  Google Scholar 

  36. Kaufman RM, Airo R, Pollack S, Crosby WH (1965) Circulating megakaryocytes and platelet release in the lung. Blood 26(6):720–731

    CAS  PubMed  Google Scholar 

  37. Pedersen NT (1978) Occurrence of megakaryocytes in various vessels and their retention in the pulmonary capillaries in man. Scand J Haematol 21(5):369–375

    Article  CAS  PubMed  Google Scholar 

  38. Kallinikos-Maniatis A (1969) Megakaryocytes and platelets in central venous and arterial blood. Acta Haematol 42(6):330–335

    Article  CAS  PubMed  Google Scholar 

  39. Bierman HR (1955) The hematologic role of the lung in man. Am J Surg 89(1):130–140

    Article  CAS  PubMed  Google Scholar 

  40. Levine RF, Eldor A, Shoff PK, Kirwin S, Tenza D, Cramer EM (1993) Circulating megakaryocytes: delivery of large numbers of intact, mature megakaryocytes to the lungs. Eur J Haematol 51(4):233–246

    Article  CAS  PubMed  Google Scholar 

  41. Trowbridge EA, Martin JF, Slater DN (1982) Evidence for a theory of physical fragmentation of megakaryocytes, implying that all platelets are produced in the pulmonary circulation. Thromb Res 28(4):461–475

    Article  CAS  PubMed  Google Scholar 

  42. Kosaki G (2005) In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? Int J Hematol 81(3):208–219

    Article  CAS  PubMed  Google Scholar 

  43. Shaklai M, Tavassoli M (1978) Demarcation membrane system in rat megakaryocyte and the mechanism of platelet formation: a membrane reorganization process. J Ultrastruct Res 62(3):270–285

    Article  CAS  PubMed  Google Scholar 

  44. Yamada E (1957) The fine structure of the megakaryocyte in the mouse spleen. Acta Anat (Basel) 29(3):267–290

    Article  CAS  Google Scholar 

  45. Kroll MH, Afshar-Kharghan V (2012) Platelets in pulmonary vascular physiology and pathology. Pulm Circ 2(3):291–308

    Article  PubMed  PubMed Central  Google Scholar 

  46. Machlus KR, Italiano JE Jr (2013) The incredible journey: from megakaryocyte development to platelet formation. J Cell Biol 201(6):785–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    Article  CAS  PubMed  Google Scholar 

  48. Dunois-Larde C, Capron C, Fichelson S, Bauer T, Cramer-Borde E, Baruch D (2009) Exposure of human megakaryocytes to high shear rates accelerates platelet production. Blood 114(9):1875–1883

    Article  CAS  PubMed  Google Scholar 

  49. Thon JN, Mazutis L, Wu S et al (2014) Platelet bioreactor-on-a-chip. Blood 124(12):1857–1867

    Google Scholar 

  50. Lewis N, Majerus PW (1969) Lipid metabolism in human platelets. II. De novo phospholipid synthesis and the effect of thrombin on the pattern of synthesis. J Clin Invest 48(11):2114–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Majerus PW, Smith MB, Clamon GH (1969) Lipid metabolism in human platelets. I. Evidence for a complete fatty acid synthesizing system. J Clin Invest 48(1):156–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakagawa Y, Nakamura S, Nakajima M et al (2013) Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes. Exp Hematol 41(8):742–748

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura S, Takayama N, Hirata S et al (2014) Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 14(4):535–548

    Article  CAS  PubMed  Google Scholar 

  54. Feng Q, Shabrani N, Thon JN et al (2014) Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 3(5):817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Diana Lim for her excellent figure preparation and Dr. Guy Zimmerman for his thoughtful suggestions and insights. We appreciate Ms. Nancy Chandler’s assistance with preparing SEM images and we thank Dr. Walter H. Kahr for his collaboration with TEM pictures. This work was supported by the NIH (HL126547 and HL112311) and the NIA (AG048022). Dr. Hansjörg Schwertz was supported by a Lichtenberg-Professorship from the Volkswagen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjörg Schwertz MD/PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rondina, M.T., Schwertz, H. (2016). Morphogenesis of Platelets in the Circulation. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_5

Download citation

Publish with us

Policies and ethics