Skip to main content

Strategies for the Gene Modification of Megakaryopoiesis and Platelets

  • Chapter
  • First Online:
Molecular and Cellular Biology of Platelet Formation

Abstract

Platelets are the central players controlling blood hemostasis. Deregulation of their function leads to various bleeding disorders in human patients with sometimes life-threatening symptoms. To develop therapeutic approaches for these patients, we have to understand the mechanisms behind the diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ackermann M, Lachmann N, Hartung S, Eggenschwiler R, Pfaff N, Happle C, Mucci A, Göhring G, Niemann H, Hansen G et al (2014) Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials 35:1531–1542

    Article  CAS  PubMed  Google Scholar 

  2. Adair JE, Johnston SK, Mrugala MM, Beard BC, Guyman LA, Baldock AL, Bridge CA, Hawkins-Daarud A, Gori JL, Born DE et al (2014) Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. J Clin Invest 124:4082–4092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science (New York, NY) 341:1233151

    Article  CAS  Google Scholar 

  4. Akagi K, Sandig V, Vooijs M, Van der Valk M, Giovannini M, Strauss M, Berns A (1997) Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res 25:1766–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D (1996) Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87(6):2162–70

    CAS  PubMed  Google Scholar 

  6. Anastassiadis K, Fu J, Patsch C, Hu S, Weidlich S, Duerschke K, Buchholz F, Edenhofer F, Stewart AF (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515

    Article  CAS  PubMed  Google Scholar 

  7. Anastassiadis K, Schnütgen F, von Melchner H, Stewart AF (2013) Gene targeting and site-specific recombination in mouse ES cells. Methods Enzymol 533:133–155

    Article  CAS  PubMed  Google Scholar 

  8. Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo M-G (2009) In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 114:5152–5161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anton M, Graham FL (1995) Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J Virol 69:4600–4606

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Antoniou MN, Skipper KA, Anakok O (2013) Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 24:363–374

    Article  CAS  PubMed  Google Scholar 

  11. Araki K, Araki M, Yamamura K (1997) Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucl Acids Res 25:868–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aronovich EL, McIvor RS, Hackett PB (2011) The sleeping beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 20:R14–R20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babinet C, Cohen-Tannoudji M (2001) Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. An Acad Bras Cienc 73:365–383

    Article  CAS  PubMed  Google Scholar 

  14. Ballmaier M, Germeshausen M, Schulze H, Cherkaoui K, Lang S, Gaudig A, Krukemeier S, Eilers M, Strauss G, Welte K (2001) c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97:139–146

    Article  CAS  PubMed  Google Scholar 

  15. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ (1999) Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab’gamma)2 antibody. Nat Biotechnol 17:181–186

    Article  CAS  PubMed  Google Scholar 

  16. Bartosch B, Cosset F-L (2004) Strategies for retargeted gene delivery using vectors derived from lentiviruses. Curr Gene Ther 4:427–443

    Article  CAS  PubMed  Google Scholar 

  17. Bastian LS, Yagi M, Chan C, Roth GJ (1996) Analysis of the megakaryocyte glycoprotein IX promoter identifies positive and negative regulatory domains and functional GATA and Ets sites. J Biol Chem 271:18554–18560

    Article  CAS  PubMed  Google Scholar 

  18. Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH Jr (1995) Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 10(1):119–121

    Article  CAS  PubMed  Google Scholar 

  19. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, NY) 326:1509–1512

    Article  CAS  Google Scholar 

  20. Boitano AE, Wang J, Romeo R, Bouchez LC, Parker AE, Sutton SE, Walker JR, Flaveny CA, Perdew GH, Denison MS et al (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science (New York, NY) 329:1345–1348

    Article  CAS  Google Scholar 

  21. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Díez IA, Dewey RA, Böhm M, Nowrouzi A, Ball CR, Glimm H et al (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363:1918–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, Modlich U, Beier R, Göhring G, Steinemann D et al (2014) Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med 6:227ra33

    Google Scholar 

  23. Brendel C, Goebel B, Daniela A, Brugman M, Kneissl S, Schwäble J, Kaufmann KB, Müller-Kuller U, Kunkel H, Chen-Wichmann L et al (2015) CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells. Mol Ther J Am Soc Gene Ther 23:63–70

    Article  CAS  Google Scholar 

  24. Broach JR, Hicks JB (1980) Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 21:501–508

    Article  CAS  PubMed  Google Scholar 

  25. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, D’Angelo A, Naldini L (2007) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110:4144–4152

    Article  CAS  PubMed  Google Scholar 

  26. Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    Article  CAS  PubMed  Google Scholar 

  27. Büning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  PubMed  CAS  Google Scholar 

  28. Calaminus S, Guitart AV, Guitart A, Sinclair A, Schachtner H, Watson SP, Holyoake TL, Kranc KR, Machesky LM (2012) Lineage tracing of Pf4-Cre marks hematopoietic stem cells and their progeny. PLoS One 7:e51361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Capecchi M (1989) Altering the genome by homologous recombination. Science 244:1288–1292

    Article  CAS  PubMed  Google Scholar 

  30. Cavazzana-Calvo M, André-Schmutz I, Fischer A (2013) Haematopoietic stem cell transplantation for SCID patients: where do we stand? Br J Haematol 160:146–152

    Article  CAS  PubMed  Google Scholar 

  31. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (New York, NY) 288:669–672

    Article  CAS  Google Scholar 

  32. Chandrashekran A, Sarkar R, Thrasher A, Fraser SE, Dibb N, Casimir C, Winston R, Readhead C (2014) Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa. FASEB J Off Publ Federation Am Soc Exp Biol 28:569–576

    Article  CAS  Google Scholar 

  33. Chang AH, Stephan MT, Lisowski L, Sadelain M (2008) Erythroid-specific human factor IX delivery from in vivo selected hematopoietic stem cells following nonmyeloablative conditioning in hemophilia B mice. Mol Ther J Am Soc Gene Ther 16:1745–1752

    Article  CAS  Google Scholar 

  34. Chen Y, Schroeder JA, Kuether EL, Zhang G, Shi Q (2014) Platelet gene therapy by lentiviral gene delivery to hematopoietic stem cells restores hemostasis and induces humoral immune tolerance in FIX(null) mice. Mol Ther J Am Soc Gene Ther 22:169–177

    Article  CAS  Google Scholar 

  35. Cherepanov P, Maertens G, Proost P, Devreese B, van Beeumen J, Engelborghs Y, de Clercq E, Debyser Z (2003) HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381

    Article  CAS  PubMed  Google Scholar 

  36. Cho A, Haruyama N, Kulkarni AB (2009) Generation of transgenic mice. Curr Protocols Cell Biol/editorial board, Juan S. Bonifacino … et al. Chapter 19, Unit 19.11

    Google Scholar 

  37. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chung JH, Whiteley M, Felsenfeld G (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74:505–514

    Article  CAS  PubMed  Google Scholar 

  39. Connor P, Khair K, Liesner R, Amrolia P, Veys P, Ancliff P, Mathias M (2008) Stem cell transplantation for children with Glanzmann thrombasthenia. Br J Haematol 140:568–571

    Article  CAS  PubMed  Google Scholar 

  40. Cox MM (1983) The FLP protein of the yeast 2-microns plasmid: expression of a eukaryotic genetic recombination system in Escherichia coli. Proc Natl Acad Sci U S A 80:4223–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Rijck J, de Kogel C, Demeulemeester J, Vets S, El Ashkar S, Malani N, Bushman FD, Landuyt B, Husson SJ, Busschots K et al (2013) The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell Rep 5:886–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Deng C-X (2012) The use of Cre–loxP technology and inducible systems to generate mouse models of cancer. In: Green JE, Ried T (eds) Genetically engineered mice for cancer research. Springer, New York, pp 17–36

    Chapter  Google Scholar 

  43. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science (New York, NY) 346:1258096

    Article  CAS  Google Scholar 

  44. Drake AC, Chen Q, Chen J (2012) Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol Immunol 9:215–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dropulić B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22:649–657

    Article  PubMed  CAS  Google Scholar 

  46. Du LM, Nurden P, Nurden AT, Nichols TC, Bellinger DA, Jensen ES, Haberichter SL, Merricks E, Raymer RA, Fang J et al (2013) Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A. Nat Commun 4:2773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dymecki SM (1996) Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc Natl Acad Sci U S A 93:6191–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ellis J (2005) Silencing and variegation of gammaretrovirus and lentivirus vectors // silencing and variegation of gammaretrovirus and lentivirus vectors. Hum Gene Ther 16:1241–1246

    Article  CAS  PubMed  Google Scholar 

  49. Emambokus NR, Frampton J (2003) The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 19:33–45

    Article  CAS  PubMed  Google Scholar 

  50. Fang J, Jensen ES, Boudreaux MK, Du LM, Hawkins TB, Koukouritaki SB, Cornetta K, Wilcox DA (2011) Platelet gene therapy improves hemostatic function for integrin alphaIIbbeta3-deficient dogs. Proc Natl Acad Sci U S A 108:9583–9588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  53. Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M (2013) LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A 110:7306–7311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Furihata K, Kunicki TJ (2002) Characterization of human glycoprotein VI gene 5′ regulatory and promoter regions. Arterioscler Thromb Vasc Biol 22:1733–1739

    Article  CAS  PubMed  Google Scholar 

  56. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, Brouns G, Schmidt M, von Kalle C, Barington T et al (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  CAS  PubMed  Google Scholar 

  57. Genovese P, Schiroli G, Escobar G, Di Tomaso T, Firrito C, Calabria A, Moi D, Mazzieri R, Bonini C, Holmes MC et al (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gentner B, Naldini L (2012) Exploiting microRNA regulation for genetic engineering. Tissue Antigens 80:393–403

    Article  CAS  PubMed  Google Scholar 

  59. Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M, Naldini L (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 6:63–66

    Article  CAS  PubMed  Google Scholar 

  60. Gentner B, Visigalli I, Hiramatsu H, Lechman E, Ungari S, Giustacchini A, Schira G, Amendola M, Quattrini A, Martino S et al (2010) Identification of hematopoietic stem cell-specific miRNAs enables gene therapy of globoid cell leukodystrophy. Sci Transl Med 2:58ra84

    Article  CAS  PubMed  Google Scholar 

  61. Ghirlando R, Giles K, Gowher H, Xiao T, Xu Z, Yao H, Felsenfeld G (2012) Chromatin domains, insulators, and the regulation of gene expression. Biochim Biophys Acta 1819:644–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Girard-Gagnepain A, Amirache F, Costa C, Lévy C, Frecha C, Fusil F, Nègre D, Lavillette D, Cosset F-L, Verhoeyen E (2014) Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 124:1221–1231

    Article  CAS  PubMed  Google Scholar 

  63. Graus-Porta D, Blaess S, Senften M, Littlewood-Evans A, Damsky C, Huang Z, Orban P, Klein R, Schittny JC, Müller U (2001) Beta1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31:367–379

    Article  CAS  PubMed  Google Scholar 

  64. Greene TK, Lyde RB, Bailey SC, Lambert MP, Zhai L, Sabatino DE, Camire RM, Arruda VR, Poncz M (2014) Apoptotic effects of platelet factor VIII on megakaryopoiesis: implications for a modified human FVIII for platelet-based gene therapy. J Thrombosis Haemostasis JTH 12:2102–2112

    Article  CAS  Google Scholar 

  65. Greene TK, Wang C, Hirsch JD, Zhai L, Gewirtz J, Thornton MA, Miao HZ, Pipe SW, Kaufman RJ, Camire RM et al (2010) In vivo efficacy of platelet-delivered, high specific activity factor VIII variants. Blood 116:6114–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M, Naldini L, Dick JE (2000) Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther J Am Soc Gene Ther 1:566–573

    Article  CAS  Google Scholar 

  67. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo F, Gopaul DN, van Duyne GD (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:40–46

    Article  CAS  PubMed  Google Scholar 

  69. Gupta SS, Maetzig T, Maertens GN, Sharif A, Rothe M, Weidner-Glunde M, Galla M, Schambach A, Cherepanov P, Schulz TF (2013) Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J Virol 87:12721–12736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gutiérrez L, Tsukamoto S, Suzuki M, Yamamoto-Mukai H, Yamamoto M, Philipsen S, Ohneda K (2008) Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 111:4375–4385

    Article  PubMed  CAS  Google Scholar 

  71. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118:3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hacein-Bey-Abina S, Pai S-Y, Gaspar HB, Armant M, Berry CC, Blanche S, Bleesing J, Blondeau J, de Boer H, Buckland KF et al (2014) A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med 371:1407–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hall B, Limaye A, Kulkarni AB (2009) Overview: generation of gene knockout mice. Curr Protocols Cell Biol/editorial board, Juan S. Bonifacino … et al. Chapter 19, Unit 19.12 19.12.1-17

    Google Scholar 

  74. Hashimoto Y, Ware J (1995) Identification of essential GATA and Ets binding motifs within the promoter of the platelet glycoprotein Ib alpha gene. J Biol Chem 270:24532–24539

    Article  CAS  PubMed  Google Scholar 

  75. Heckl D, Kowalczyk MS, Yudovich D, Belizaire R, Puram RV, McConkey ME, Thielke A, Aster JC, Regev A, Ebert BL (2014) Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32:941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heckl D, Schwarzer A, Haemmerle R, Steinemann D, Rudolph C, Skawran B, Knoess S, Krause J, Li Z, Schlegelberger B et al (2012) Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia. Mol Ther J Am Soc Gene Ther 20:1187–1195

    Article  CAS  Google Scholar 

  77. Heckl D, Wicke DC, Brugman MH, Meyer J, Schambach A, Büsche G, Ballmaier M, Baum C, Modlich U (2011) Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia. Blood 117:3737–3747

    Article  CAS  PubMed  Google Scholar 

  78. High KH, Nathwani A, Spencer T, Lillicrap D (2014) Current status of haemophilia gene therapy. Haemophilia Off J World Fed Hemophilia 20(Suppl 4):43–49

    Article  CAS  Google Scholar 

  79. Hirata S, Takayama N, Jono-Ohnishi R, Endo H, Nakamura S, Dohda T, Nishi M, Hamazaki Y, Ishii E, Kaneko S et al (2013) Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling. J Clin Invest 123:3802–3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, Ho M, Lumaquin D, Gray D, Lill GR et al (2015) Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125:2597–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hoess RH, Abremski K (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci U S A 81:1026–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman MH, Pike-Overzet K, Chatters SJ, de Ridder D et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hug H, Costas M, Staeheli P, Aebi M, Weissmann C (1988) Organization of the murine Mx gene and characterization of its interferon- and virus-inducible promoter. Mol Cell Biol 8:3065–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ikawa M, Tanaka N, Kao WW-Y, Verma IM (2003) Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol Ther J Am Soc Gene Ther 8:666–673

    Article  CAS  Google Scholar 

  85. Ingrungruanglert P, Amarinthnukrowh P, Rungsiwiwut R, Maneesri-le Grand S, Sosothikul D, Suphapeetiporn K, Israsena N, Shotelersuk V (2015) Wiskott-Aldrich syndrome iPS cells produce megakaryocytes with defects in cytoskeletal rearrangement and proplatelet formation. Thrombosis Haemostasis 113(4):792–805

    Google Scholar 

  86. Ivics Z, Hackett PB, Plasterk RH, Izsvák Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  CAS  PubMed  Google Scholar 

  87. Ivics Z, Mátés L, Yau TY, Landa V, Zidek V, Bashir S, Hoffmann OI, Hiripi L, Garrels W, Kues WA et al (2014) Germline transgenesis in rodents by pronuclear microinjection of sleeping beauty transposons. Nat Protoc 9:773–793

    Article  CAS  PubMed  Google Scholar 

  88. Izsvák Z, Ivics Z (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol Ther J Am Soc Gene Ther 9:147–156

    Article  CAS  Google Scholar 

  89. Jähner D, Stuhlmann H, Stewart CL, Harbers K, Löhler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  PubMed  Google Scholar 

  90. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, NY) 337:816–821

    Article  CAS  Google Scholar 

  91. Johnston JM, Denning G, Doering CB, Spencer HT (2013) Generation of an optimized lentiviral vector encoding a high-expression factor VIII transgene for gene therapy of hemophilia A. Gene Ther 20:607–615

    Article  CAS  PubMed  Google Scholar 

  92. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 42:e147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kanaji S, Kuether EL, Fahs SA, Schroeder JA, Ware J, Montgomery RR, Shi Q (2012) Correction of murine Bernard-Soulier syndrome by lentivirus-mediated gene therapy. Mol Ther J Ame Soc Gene Ther 20:625–632

    Article  CAS  Google Scholar 

  94. Kanatsu-Shinohara M, Toyokuni S, Shinohara T (2004) Transgenic mice produced by retroviral transduction of male germ line stem cells in vivo. Biol Reprod 71:1202–1207

    Article  CAS  PubMed  Google Scholar 

  95. Kaufmann KB, Chiriaco M, Siler U, Finocchi A, Reichenbach J, Stein S, Grez M (2014) Gene therapy for chronic granulomatous disease: current status and future perspectives. Curr Gene Ther 14:447–460

    Article  CAS  PubMed  Google Scholar 

  96. Kays S.-K, Kaufmann K.B, Abel T, Brendel C, Bonig H, Grez M, Buchholz C.J, Kneissl S (2015) CD105 Is a surface marker for receptor-targeted gene transfer into human long-term repopulating hematopoietic stem cells. Stem Cells Development 24(6):714–723

    Google Scholar 

  97. Kikuchi J, Mimuro J, Ogata K, Tabata T, Ueda Y, Ishiwata A, Kimura K, Kimura K, Takano K, Madoiwa S et al (2004) Sustained transgene expression by human cord blood derived CD34+ cells transduced with simian immunodeficiency virus agmTYO1-based vectors carrying the human coagulation factor VIII gene in NOD/SCID mice. J Gene Med 6:1049–1060

    Article  CAS  PubMed  Google Scholar 

  98. Kile BT (2014) The role of apoptosis in megakaryocytes and platelets. Br J Haematol 165:217–226

    Article  CAS  PubMed  Google Scholar 

  99. Kraunus J, Schaumann DHS, Meyer J, Modlich U, Fehse B, Brandenburg G, von Laer D, Klump H, Schambach A, Bohne J et al (2004) Self-inactivating retroviral vectors with improved RNA processing. Gene Ther 11:1568–1578

    Article  CAS  PubMed  Google Scholar 

  100. Kuether EL, Schroeder JA, Fahs SA, Cooley BC, Chen Y, Montgomery RR, Wilcox DA, Shi Q (2012) Lentivirus-mediated platelet gene therapy of murine hemophilia A with pre-existing anti-factor VIII immunity. J Thromb Haemost JTH 10:1570–1580

    Article  CAS  PubMed  Google Scholar 

  101. Kufrin D, Eslin DE, Bdeir K, Murciano J-C, Kuo A, Kowalska MA, Degen JL, Sachais BS, Cines DB, Poncz M (2003) Antithrombotic thrombocytes: ectopic expression of urokinase-type plasminogen activator in platelets. Blood 102:926–933

    Article  CAS  PubMed  Google Scholar 

  102. Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429

    Article  CAS  PubMed  Google Scholar 

  103. Kuno J, Poueymirou WT, Gong G, Siao C-J, Clarke G, Esau L, Kojak N, Posca J, Atanasio A, Strein J et al (2015) Generation of fertile and fecund F0 XY female mice from XY ES cells. Transgenic Res 24:19–29

    Article  CAS  PubMed  Google Scholar 

  104. Lacroix C, Giovannini D, Combe A, Bargieri DY, Späth S, Panchal D, Tawk L, Thiberge S, Carvalho TG, Barale J-C et al (2011) FLP/FRT-mediated conditional mutagenesis in pre-erythrocytic stages of Plasmodium berghei. Nat Protoc 6:1412–1428

    Article  CAS  PubMed  Google Scholar 

  105. Lannutti BJ, Epp A, Roy J, Chen J, Josephson NC (2009) Incomplete restoration of Mpl expression in the mpl-/- mouse produces partial correction of the stem cell-repopulating defect and paradoxical thrombocytosis. Blood 113:1778–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lemarchandel V, Ghysdael J, Mignotte V, Rahuel C, Roméo PH (1993) GATA and Ets cis-acting sequences mediate megakaryocyte-specific expression. Mol Cell Biol 13:668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Limaye A, Hall B, Kulkarni AB (2009) Manipulation of mouse embryonic stem cells for knockout mouse production. Curr Protocols Cell Biol/editorial board, Juan S. Bonifacino … et al. Chapter 19, Unit 19.13 19.13.1-24

    Google Scholar 

  108. Lipscomb DL, Bourne C, Boudreaux MK (2000) Two genetic defects in alphaIIb are associated with type I Glanzmann’s thrombasthenia in a great Pyrenees dog: a 14-base insertion in exon 13 and a splicing defect of intron 13. Vet Pathol 37:581–588

    Article  CAS  PubMed  Google Scholar 

  109. Liu M, Maurano MT, Wang H, Qi H, Song C-Z, Navas PA, Emery DW, Stamatoyannopoulos JA, Stamatoyannopoulos G (2015) Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol 33:198–203

    Article  PubMed  CAS  Google Scholar 

  110. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science (New York, NY) 295:868–872

    Article  CAS  Google Scholar 

  111. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee Y-L, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    Article  CAS  PubMed  Google Scholar 

  112. Lozier JN, Dutra A, Pak E, Zhou N, Zheng Z, Nichols TC, Bellinger DA, Read M, Morgan RA (2002) The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc Natl Acad Sci USA 99:12991–12996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lund AH, Duch M, Pedersen FS (1996) Transcriptional silencing of retroviral vectors. J Biomed Sci 3:365–378

    Article  CAS  PubMed  Google Scholar 

  114. Maetzig T, Galla M, Baum C, Schambach A (2011) Gammaretroviral vectors: biology, technology and application. Viruses 3:677–713

    Article  PubMed  PubMed Central  Google Scholar 

  115. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) 6212-FIN.indd//The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257

    Article  CAS  PubMed  Google Scholar 

  116. Mansour SL (1990) Gene targeting in murine embryonic stem cells: introduction of specific alterations into the mammalian genome. Gene Anal Tech 7:219–227

    Article  CAS  Google Scholar 

  117. Mátrai J, Cantore A, Bartholomae CC, Annoni A, Wang W, Acosta-Sanchez A, Samara-Kuko E, Waele L, de Ma L, Genovese P et al (2011) Hepatocyte-targeted expression by integrase-defective lentiviral vectors induces antigen-specific tolerance in mice with low genotoxic risk. Hepatology (Baltimore, Md) 53:1696–1707

    Article  CAS  Google Scholar 

  118. McCrann DJ, Yezefski T, Nguyen HG, Papadantonakis N, Liu H, Wen Q, Crispino JD, Ravid K (2008) Survivin overexpression alone does not alter megakaryocyte ploidy nor interfere with erythroid/megakaryocytic lineage development in transgenic mice. Blood 111:4092–4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Melton DW (2002) Gene-targeting strategies. Methods Mol Biol (Clifton, NJ) 180:151–173

    CAS  Google Scholar 

  120. Mikkers H, Berns A (2003) Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 88:53–99

    CAS  PubMed  Google Scholar 

  121. Miller AD (1990) Retrovirus packaging cells/retrovirus packaging cells. Hum Gene Ther 1:5–14

    Article  CAS  PubMed  Google Scholar 

  122. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10:4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Miller AD, Rosman GJ (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7:980-2–984-6, 989–90

    Google Scholar 

  124. Milsom MD, Williams DA (2007) Live and let die: in vivo selection of gene-modified hematopoietic stem cells via MGMT-mediated chemoprotection. DNA Repair 6:1210–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Minami T, Tachibana K, Imanishi T, Doi T (1998) Both Ets-1 and GATA-1 are essential for positive regulation of platelet factor 4 gene expression. Eur J Biochem/FEBS 258:879–889

    Article  CAS  Google Scholar 

  126. Mitchell RS, Beitzel BF, Schroder ARW, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6:1808–1818

    Article  CAS  PubMed  Google Scholar 

  128. Mock U, Riecken K, Berdien B, Qasim W, Chan E, Cathomen T, Fehse B (2014) Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci Rep 4:6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z, Kamino K, von Neuhoff N, Schlegelberger B, Kuehlcke K et al (2005) Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 105:4235–4246

    Article  CAS  PubMed  Google Scholar 

  130. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, Schambach A, Charrier S, Galy A, Thrasher AJ et al (2009) Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther J Am Soc Gene Ther 17:1919–1928

    Article  CAS  Google Scholar 

  131. Modlich U, Schambach A, Brugman MH, Wicke DC, Knoess S, Li Z, Maetzig T, Rudolph C, Schlegelberger B, Baum C (2008) Leukemia induction after a single retroviral vector insertion in Evi1 or Prdm16. Leukemia 22:1519–1528

    Article  CAS  PubMed  Google Scholar 

  132. Moritz T, Mackay W, Glassner BJ, Williams DA, Samson L (1995) Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 55:2608–2614

    CAS  PubMed  Google Scholar 

  133. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science (New York, NY) 326:1501

    Article  CAS  Google Scholar 

  134. Müller U (1999) Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 82:3–21

    Article  PubMed  Google Scholar 

  135. Müller-Kuller U, Ackermann M, Kolodziej S, Brendel C, Fritsch J, Lachmann N, Kunkel H, Lausen J, Schambach A, Moritz T et al (2015) A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res 43:1577–1592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Münch RC, Janicki H, Völker I, Rasbach A, Hallek M, Büning H, Buchholz CJ (2013) Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther J Am Soc Gene Ther 21:109–118

    Article  CAS  Google Scholar 

  137. Mussolino C, Cathomen T (2012) TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol 23:644–650

    Article  CAS  PubMed  Google Scholar 

  138. Nair N, Rincon MY, Evens H, Sarcar S, Dastidar S, Samara-Kuko E, Ghandeharian O, Man Viecelli H, Thöny B, de Bleser P et al (2014) Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy. Blood 123:3195–3199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (New York, NY) 272:263–267

    Article  CAS  Google Scholar 

  140. Nathwani AC, Reiss UM, Tuddenham EGD, Rosales C, Chowdary P, McIntosh J, Della Peruta M, Lheriteau E, Patel N, Raj D et al (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371:1994–2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Nathwani AC, Tuddenham EGD, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nègre D, Duisit G, Mangeot PE, Moullier P, Darlix JL, Cosset FL (2002) Lentiviral vectors derived from simian immunodeficiency virus. Curr Top Microbiol Immunol 261:53–74

    PubMed  Google Scholar 

  143. Ng AP, Kauppi M, Metcalf D, Hyland CD, Josefsson EC, Lebois M, Zhang J-G, Baldwin TM, Di Rago L, Hilton DJ et al (2014) Mpl expression on megakaryocytes and platelets is dispensable for thrombopoiesis but essential to prevent myeloproliferation. Proc Natl Acad Sci U S A 111:5884–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nguyen HG, Yu G, Makitalo M, Yang D, Xie H-X, Jones MR, Ravid K (2005) Conditional overexpression of transgenes in megakaryocytes and platelets in vivo. Blood 106:1559–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nowakowski A, Alonso-Martín S, Arias-Salgado EG, Fernández D, Vilar M, Ayuso MS, Parrilla R (2011) Megakaryocyte gene targeting mediated by restricted expression of recombinase Cre. Thromb Haemost 105:138–144

    Article  CAS  PubMed  Google Scholar 

  146. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science (New York, NY) 251:1351–1355

    Article  Google Scholar 

  147. Ohmori T, Ishiwata A, Kashiwakura Y, Madoiwa S, Mitomo K, Suzuki H, Hasegawa M, Mimuro J, Sakata Y (2008) Phenotypic correction of hemophilia A by ectopic expression of activated factor VII in platelets. Mol Ther J Am Soc Gene Ther 16:1359–1365

    Article  CAS  Google Scholar 

  148. Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Sakata Y (2007) Silencing of a targeted protein in in vivo platelets using a lentiviral vector delivering short hairpin RNA sequence. Arterioscler Thromb Vasc Biol 27:2266–2272

    Article  CAS  PubMed  Google Scholar 

  149. Ohmori T, Mimuro J, Takano K, Madoiwa S, Kashiwakura Y, Ishiwata A, Niimura M, Mitomo K, Tabata T, Hasegawa M et al (2006) Efficient expression of a transgene in platelets using simian immunodeficiency virus-based vector harboring glycoprotein Ibalpha promoter: in vivo model for platelet-targeting gene therapy. FASEB J Off Publ Fed Am Soc Exp Biol 20:1522–1524

    CAS  Google Scholar 

  150. Okada Y, Nagai R, Sato T, Matsuura E, Minami T, Morita I, Doi T (2003) Homeodomain proteins MEIS1 and PBXs regulate the lineage-specific transcription of the platelet factor 4 gene. Blood 101:4748–4756

    Article  CAS  PubMed  Google Scholar 

  151. Orban M, Goedel A, Haas J, Sandrock-Lang K, Gärtner F, Jung CB, Zieger B, Parrotta E, Kurnik K, Sinnecker D et al (2015) Functional comparison of induced pluripotent stem cell- and blood-derived GPIIbIIIa deficient platelets. PLoS One 10:e0115978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kühlcke K, Schilz A, Kunkel H et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  CAS  PubMed  Google Scholar 

  153. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LMS, Kadota K, Roth SL, Giardina P, Viale A et al (2011) Genomic safe harbors permit high β-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78

    Article  CAS  PubMed  Google Scholar 

  154. Pertuy F, Aguilar A, Strassel C, Eckly A, Freund J-N, Duluc I, Gachet C, Lanza F, Léon C (2015) Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. J Thromb Haemost JTH 13:115–125

    Article  CAS  PubMed  Google Scholar 

  155. Petrillo C, Cesana D, Piras F, Bartolaccini S, Naldini L, Montini E, Kajaste-Rudnitski A (2015) Cyclosporin a and rapamycin relieve distinct lentiviral restriction blocks in hematopoietic stem and progenitor cells. Mol Ther J Am Soc Gene Ther 23:352–362

    Article  CAS  Google Scholar 

  156. Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, Mallet J, Serguera C (2006) Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci U S A 103:17684–17689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Pollard VW, Malim MH (1998) The HIV-1 rev protein/the HIV-1 rev protein. Annu Rev Microbiol 52:491–532

    Article  CAS  PubMed  Google Scholar 

  158. Rappaport A, Johnson L (2014) Genetically engineered knock-in and conditional knock-in mouse models of cancer. Cold Spring Harb Protoc 2014:897–911

    Article  PubMed  Google Scholar 

  159. Ravid K, Beeler DL, Rabin MS, Ruley HE, Rosenberg RD (1991) Selective targeting of gene products with the megakaryocyte platelet factor 4 promoter. Proc Natl Acad Sci U S A 88:1521–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ravid K, Doi T, Beeler DL, Kuter DJ, Rosenberg RD (1991) Transcriptional regulation of the rat platelet factor 4 gene: interaction between an enhancer/silencer domain and the GATA site. Mol Cell Biol 11:6116–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rieger C, Rank A, Fiegl M, Tischer J, Schiel X, Ostermann H, Kolb H-J (2006) Allogeneic stem cell transplantation as a new treatment option for patients with severe Bernard-Soulier Syndrome. Thromb Haemost 95:190–191

    PubMed  Google Scholar 

  162. Robertson EJ (1991) Using embryonic stem cells to introduce mutations into the mouse germ line. Biol Reprod 44:238–245

    Article  CAS  PubMed  Google Scholar 

  163. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ, Valenzuela DM, Yancopoulos GD, Eynon EE, Stevens S et al (2011) Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci U S A 108:2378–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T (2014) Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4:5400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Santoni de Sio, Naldini L (2009) Short-term culture of human CD34+ cells for lentiviral gene transfer. Methods Mol Biol (Clifton, NJ) 506:59–70

    Article  CAS  Google Scholar 

  166. Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32:6086–6095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sauvageau G, Iscove NN, Humphries RK (2004) In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 23:7223–7232

    Article  CAS  PubMed  Google Scholar 

  168. Schröder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521–529

    Article  PubMed  Google Scholar 

  169. Schroeder JA, Chen Y, Fang J, Wilcox DA, Shi Q (2014) In vivo enrichment of genetically manipulated platelets corrects the murine hemophilic phenotype and induces immune tolerance even using a low multiplicity of infection. J Thromb Haemost JTH 12:1283–1293

    Article  CAS  PubMed  Google Scholar 

  170. Seggewiss R, Pittaluga S, Adler RL, Guenaga FJ, Ferguson C, Pilz IH, Ryu B, Sorrentino BP, Young WS, Donahue RE et al (2006) Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 107:3865–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sharma A, Larue RC, Plumb MR, Malani N, Male F, Slaughter A, Kessl JJ, Shkriabai N, Coward E, Aiyer SS et al (2013) BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc Natl Acad Sci U S A 110:12036–12041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shi Q, Kuether EL, Chen Y, Schroeder JA, Fahs SA, Montgomery RR (2014) Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells. Blood 123:395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Shi Q, Wilcox DA, Fahs SA, Fang J, Johnson BD, DU LM, Desai D, Montgomery RR (2007) Lentivirus-mediated platelet-derived factor VIII gene therapy in murine haemophilia A. J Thromb Haemost JTH 5:352–361

    Article  CAS  PubMed  Google Scholar 

  174. Shi Q, Wilcox DA, Morateck PA, Fahs SA, Kenny D, Montgomery RR (2004) Targeting platelet GPIbalpha transgene expression to human megakaryocytes and forming a complete complex with endogenous GPIbbeta and GPIX. J Thromb Haemost JTH 2:1989–1997

    Article  CAS  PubMed  Google Scholar 

  175. Shultz LD, Ishikawa F, Greiner DL (2007) Humanized mice in translational biomedical research. Nat Rev Immunol 7:118–130

    Article  CAS  PubMed  Google Scholar 

  176. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J et al (2005) Human Lymphoid and Myeloid Cell Development in NOD/LtSz-scid IL2R null Mice Engrafted with Mobilized Human Hemopoietic Stem Cells. J Immunol 174:6477–6489

    Article  CAS  PubMed  Google Scholar 

  177. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234

    Article  CAS  PubMed  Google Scholar 

  178. Snapper SB, Rosen FS, Mizoguchi E, Cohen P, Khan W, Liu CH, Hagemann TL, Kwan SP, Ferrini R, Davidson L et al (1998) Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 9:81–91

    Article  CAS  PubMed  Google Scholar 

  179. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71

    Article  CAS  PubMed  Google Scholar 

  180. Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1:327–341

    CAS  PubMed  Google Scholar 

  181. Staunstrup NH, Mikkelsen JG (2011) Integrase-defective lentiviral vectors – a stage for nonviral integration machineries. Curr Gene Ther 11:350–362

    Article  CAS  PubMed  Google Scholar 

  182. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, Kinner A, Schmidt M, Krämer A, Schwäble J, Glimm H et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16:198–204

    Article  CAS  PubMed  Google Scholar 

  183. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    Article  CAS  PubMed  Google Scholar 

  184. Suerth JD, Maetzig T, Galla M, Baum C, Schambach A (2010) Self-inactivating alpharetroviral vectors with a split-packaging design. J Virol 84:6626–6635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Sullivan SK, Mills JA, Koukouritaki SB, Vo KK, Lyde RB, Paluru P, Zhao G, Zhai L, Sullivan LM, Wang Y et al (2014) High-level transgene expression in induced pluripotent stem cell-derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood 123:753–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  187. Takiguchi M, James C, Josefsson EC, Carmichael CL, Premsrirut PK, Lowe SW, Hamilton JR, Huang DCS, Kile BT, Dickins RA (2010) Transgenic, inducible RNAi in megakaryocytes and platelets in mice. J Thromb Haemost JTH 8:2751–2756

    Article  CAS  PubMed  Google Scholar 

  188. Thompson A, Zhao Z, Ladd D, Zimmet J, Ravid K (1996) A new transgenic mouse model for the study of cell cycle control in megakaryocytes. Stem Cells (Dayton, Ohio) 14 (Suppl 1):181–187

    Article  Google Scholar 

  189. Tiedt R, Coers J, Ziegler S, Wiestner A, Hao-Shen H, Bornmann C, Schenkel J, Karakhanova S, de Sauvage FJ, Jackson CW et al (2009) Pronounced thrombocytosis in transgenic mice expressing reduced levels of Mpl in platelets and terminally differentiated megakaryocytes. Blood 113:1768–1777

    Article  CAS  PubMed  Google Scholar 

  190. Tiedt R, Schomber T, Hao-Shen H, Skoda RC (2007) Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo. Blood 109:1503–1506

    Article  CAS  PubMed  Google Scholar 

  191. Touw IP, Erkeland SJ (2007) Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. Mol Ther J Am Soc Gene Ther 15:13–19

    Article  CAS  Google Scholar 

  192. Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW (2002) Improved foamy virus vectors with minimal viral sequences. Mol Ther J Am Soc Gene Ther 6:321–328

    Article  CAS  Google Scholar 

  193. Trobridge GD, Miller DG, Jacobs MA, Allen JM, Kiem H-P, Kaul R, Russell DW (2006) Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A 103:1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Tropel P, Roullot V, Vernet M, Poujol C, Pointu H, Nurden P, Marguerie G, Tronik-Le Roux D (1997) A 2.7-kb portion of the 5′ flanking region of the murine glycoprotein alphaIIb gene is transcriptionally active in primitive hematopoietic progenitor cells. Blood 90:2995–3004

    CAS  PubMed  Google Scholar 

  195. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407(2):193–221

    Google Scholar 

  197. Utomo AR, Nikitin AY, Lee WH (1999) Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat Biotechnol 17:1091–1096

    Article  CAS  PubMed  Google Scholar 

  198. van den Oudenrijn S, Bruin M, Folman CC, Peters M, Faulkner LB, de Haas M, von dem Borne AE (2000) Hm5074 441.448 // Mutations in the thrombopoietin receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J Haematol 110:441–448

    Article  PubMed  Google Scholar 

  199. van Keuren M, Gavrilina GB, Filipiak WE, Zeidler MG, Saunders TL (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res 18:769–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Vassen L, Okayama T, Möröy T (2007) Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is largely complementary to Gfi1. Blood 109:2356–2364

    Article  CAS  PubMed  Google Scholar 

  201. Walz A, Lenzen A, Curtis B, Canner J, Schneiderman J (2014) Use of allogeneic stem cell transplantation for moderate-severe Glanzmann thrombasthenia. Platelets 1–3

    Google Scholar 

  202. Wang X, Shin S.C, Chiang A.F, Khan I, Pan D, Rawlings D.J, Miao C.H (2015) Intraosseous delivery of lentiviral vectors targeting factor VIII expression in platelets corrects murine hemophilia A. Mol Ther J Am Soc Gene Ther

    Google Scholar 

  203. Wang L, Zoppè M, Hackeng TM, Griffin JH, Lee KF, Verma IM (1997) Factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci USA 94:11563–11566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wanisch K, Yáñez-Muñoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther J Am Soc Gene Ther 17:1316–1332

    Article  CAS  Google Scholar 

  205. Ware J, Russell S, Ruggeri ZM (2000) Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome. Proc Natl Acad Sci U S A 97:2803–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wicke DC, Meyer J, Buesche G, Heckl D, Kreipe H, Li Z, Welte KH, Ballmaier M, Baum C, Modlich U (2010) Gene therapy of MPL deficiency: challenging balance between leukemia and pancytopenia. Mol Ther J Am Soc Gene Ther 18:343–352

    Article  CAS  Google Scholar 

  207. Wiegering V, Sauer K, Winkler B, Eyrich M, Schlegel PG (2013) Indication for allogeneic stem cell transplantation in Glanzmann’s thrombasthenia. Hamostaseologie 33:305–312

    Article  CAS  PubMed  Google Scholar 

  208. Wilcox DA, Olsen JC, Ishizawa L, Bray PF, French DL, Steeber DA, Bell WR, Griffith M, White GC (2000) Megakaryocyte-targeted synthesis of the integrin beta(3)-subunit results in the phenotypic correction of Glanzmann thrombasthenia. Blood 95:3645–3651

    CAS  PubMed  Google Scholar 

  209. Williams DA, Lemischka IR, Nathan DG, Mulligan RC (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310:476–480

    Article  CAS  PubMed  Google Scholar 

  210. Williams DA, Thrasher AJ (2014) Concise review: lessons learned from clinical trials of gene therapy in monogenic immunodeficiency diseases. Stem Cells Trans Med 3:636–642

    Article  CAS  Google Scholar 

  211. Wong EA, Capecchi MR (1986) Analysis of homologous recombination in cultured mammalian cells in transient expression and stable transformation assays. Somat Cell Mol Genet 12:63–72

    Article  CAS  PubMed  Google Scholar 

  212. Woods NB, Fahlman C, Mikkola H, Hamaguchi I, Olsson K, Zufferey R, Jacobsen SE, Trono D, Karlsson S (2000) Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood 96:3725–3733

    CAS  PubMed  Google Scholar 

  213. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, Buch P, MacLaren RE, Anderson PN, Barker SE et al (2006) Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 12:348–353

    Article  PubMed  CAS  Google Scholar 

  214. Yarovoi HV, Kufrin D, Eslin DE, Thornton MA, Haberichter SL, Shi Q, Zhu H, Camire R, Fakharzadeh SS, Kowalska MA et al (2003) Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment. Blood 102:4006–4013

    Article  CAS  PubMed  Google Scholar 

  215. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yu SS, Han E, Hong Y, Lee J-T, Kim S, Kim S (2003) Construction of a retroviral vector production system with the minimum possibility of a homologous recombination. Gene Ther 10:706–711

    Article  CAS  PubMed  Google Scholar 

  217. Yu SF, von Rüden T, Kantoff PW, Garber C, Seiberg M, Rüther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A 83:3194–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zha Y, Shah R, Locke F, Wong A, Gajewski TF (2008) Use of Cre-adenovirus and CAR transgenic mice for efficient deletion of genes in post-thymic T cells. J Immunol Methods 331:94–102

    Article  CAS  PubMed  Google Scholar 

  219. Zhang CC, Kaba M, Iizuka S, Huynh H, Lodish HF (2008) Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111:3415–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhang G, Shi Q, Fahs SA, Kuether EL, Walsh CE, Montgomery RR (2010) Factor IX ectopically expressed in platelets can be stored in alpha-granules and corrects the phenotype of hemophilia B mice. Blood 116:1235–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, Kinnon C, Gaspar HB, Antoniou M, Thrasher AJ (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110:1448–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zhang J, Varas F, Stadtfeld M, Heck S, Faust N, Graf T (2007) CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation. Exp Hematol 35:490–499

    Article  CAS  PubMed  Google Scholar 

  223. Ziegler S, Bürki K, Skoda RC (2002) A 2-kb c-mpl promoter fragment is sufficient to direct expression to the megakaryocytic lineage and sites of embryonic hematopoiesis in transgenic mice. Blood 100:1072–1074

    Article  CAS  PubMed  Google Scholar 

  224. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisette Johana Latorre Rey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rey, L.J.L., Modlich, U. (2016). Strategies for the Gene Modification of Megakaryopoiesis and Platelets. In: Schulze, H., Italiano, J. (eds) Molecular and Cellular Biology of Platelet Formation. Springer, Cham. https://doi.org/10.1007/978-3-319-39562-3_20

Download citation

Publish with us

Policies and ethics