Skip to main content

Introduction and Theoretical Background

  • Chapter
  • First Online:
  • 612 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter the theoretical background underlying this thesis is presented to the reader. Hereby, special focus is put on interpreting and motivating theoretical considerations directly in the context of mammography. At first a description on how X-rays interact with matter alongside with the respective interaction cross sections is given, which follows considerations made by Als-Nielsen and McMorrow (Elements of modern X-ray physics, 2011, [1]) and Willmott (An introduction to synchrotron radiation: Techniques and applications, 2011, [2]). The drawn conclusions exemplify why phase-sensitive imaging techniques yield the potential to prevail conventional absorption-based methods in the field of soft-tissue assessment. Afterwards the theoretical framework for grating-based imaging utilizing X-ray Talbot interferometry is introduced. Moreover, the adjustments which are necessary to translate “idealized” grating-based imaging towards clinical implementation are outlined. Finally, this chapter concludes with a brief overview on the morphology and pathological changes of the female breast as well as the clinical diagnostics and the options of treatment associated with the latter.

If the facts don’t fit the theory, change the facts.

Albert Einstein

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Als-Nielsen, J., & McMorrow, D. (2011). Elements of modern X-ray physics. Hoboken: Wiley.

    Book  Google Scholar 

  2. Willmott, P. (2011). An introduction to synchrotron radiation: Techniques and applications. Chichester: Wiley.

    Book  Google Scholar 

  3. Paganin, D. (2006). Coherent X-Ray optics. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  4. Sanchez del Rio, M., & Dejus, R. (2011). XOP v2.4: recent developments of the X-ray optics software toolkit. Proceedings of SPIE, 8141, 814115.

    Article  Google Scholar 

  5. Wang, Y. (2007). Intuitive dimensional analyses of the energy and atomic number dependences of the cross sections for radiation interaction with matter. Journal of X-Ray Science and Technology, 15, 169–175.

    Google Scholar 

  6. Klein, O., & Nishina, Y. (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift für Physik, 52, 853–869.

    Article  ADS  MATH  Google Scholar 

  7. Thüring, T., Abis, M., Wang, Z., David, C., & Stampanoni, M. (2014). X-ray phase-contrast imaging at 100 kev on a conventional source. Scientific Reports, 4, 5198.

    Article  ADS  Google Scholar 

  8. Talbot, H. (1836). Facts relating to optical science. Philosophical Magazine IV, 9.

    Google Scholar 

  9. Edgar, R. (1969). The Fresnel diffraction images of periodic structures. Optica Acta, 16, 281–287.

    Article  ADS  Google Scholar 

  10. Saleh, B., & Teich, M. (2007). Fundamentals of photonics. Hoboken: Wiley-Interscience.

    Google Scholar 

  11. Guigay, J., et al. (1971). On Fresnel diffraction by one-dimensional periodic objects, with application to structure determination of phase objects. Optica Acta, 18, 677–682.

    Article  ADS  Google Scholar 

  12. Arrizon, V., & Ojeda-Castaneda, J. (1994). Multilevel phase gratings for array illuminators. Applied Optics, 33, 5925–5931.

    Article  ADS  Google Scholar 

  13. Weitkamp, T., David, C., Kottler, C., Bunk, O., & Pfeiffer, F. (2006). Tomography with grating interferometers at low-brilliance sources. Proceedings of SPIE, 6318, 63180.

    Article  ADS  Google Scholar 

  14. Suleski, T. (1997). Generation of Lohmann images from binary-phase Talbot array illuminators. Applied Optics, 36, 4686–4691.

    Article  ADS  Google Scholar 

  15. Xin, L., Jin-Chuan, G., Xiang, P., & Han-Ben, N. (2007). Visibility in differential phase-contrast imaging with partial coherence source. Chinese Physics, 16, 1632.

    Article  ADS  Google Scholar 

  16. Hipp, A., et al. (2014). Energy-resolved visibility analysis of grating interferometers operated at polychromatic X-ray sources. Optics Express, 22, 30394–30409.

    Article  ADS  Google Scholar 

  17. Momose, A. (2003). Phase-sensitive imaging and phase tomography using X-ray interferometers. Optics Express, 11, 2303–2314.

    Article  ADS  Google Scholar 

  18. Wen, H., et al. (2013). Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings. Nature Communications, 4, 2659.

    Article  ADS  Google Scholar 

  19. Takeda, Y., et al. (2007). X-Ray phase imaging with single phase grating. Japanese Journal of Applied Physics, 46, 89–91.

    Article  ADS  MathSciNet  Google Scholar 

  20. Momose, A., et al. (2003). Demonstration of X-Ray Talbot interferometry. Japanese Journal of Applied Physics, 42, 866–868.

    Article  ADS  Google Scholar 

  21. Weitkamp, T., et al. (2005). X-ray phase imaging with a grating interferometer. Optics Express, 13, 6296–6304.

    Article  ADS  Google Scholar 

  22. David, C., et al. (2007). Fabrication of diffraction gratings for hard X-ray phase contrast imaging. Microelectronic Engineering, 84, 1172–1177.

    Article  Google Scholar 

  23. Bech, M. (2009). X-ray imaging with a grating interferometer. Copenhagen: University of Copenhagen.

    Google Scholar 

  24. Pfeiffer, F., et al. (2008). Hard-X-ray dark-field imaging using a grating interferometer. Nature Materials, 7, 134–137.

    Article  ADS  Google Scholar 

  25. Malecki, A., Potdevin, G., & Pfeiffer, F. (2012). Quantitative wave-optical numerical analysis of the dark-field signal in grating-based X-ray interferometry. Europhysics Letters, 99, 48001.

    Article  ADS  Google Scholar 

  26. Bech, M., et al. (2010). Quantitative X-ray dark-field computed tomography. Physics in Medicine and Biology, 55, 5529.

    Article  ADS  Google Scholar 

  27. Strobl, M. (2014). General solution for quantitative dark-field contrast imaging with grating interferometers. Scientific Reports, 4, 7243.

    Article  ADS  Google Scholar 

  28. Yashiro, W., Terui, Y., Kawabata, K., & Momose, A. (2010). On the origin of visibility contrast in X-ray Talbot interferometry. Optics Express, 18, 16890–16901.

    Article  ADS  Google Scholar 

  29. Köhler, T., Jürgen Engel, K., & Roessl, E. (2011). Noise properties of grating-based X-ray phase contrast computed tomography. Medical Physics, 38, 106.

    Article  Google Scholar 

  30. Born, M., & Wolf, E. (1999). Principles of optics—electromagnetic theory of propagation, interference and diffraction of light. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  31. Pfeiffer, F., Weitkamp, T., Bunk, O., & David, C. (2006). Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Physics, 2, 258–261.

    Article  ADS  Google Scholar 

  32. Engelhardt, M., et al. (2008). The fractional talbot effect in differential X-ray phase-contrast imaging for extended and polychromatic X-ray sources. Journal of Microscopy, 232, 145–157.

    Article  MathSciNet  Google Scholar 

  33. Thuering, T., et al. (2011). High resolution, large field of view X-ray differential phase contrast imaging on a compact setup. Applied Physics Letters, 99, 041111.

    Article  ADS  Google Scholar 

  34. Kopans, D. (2006). Breast imaging. Baltimore: Lippincott Williams & Wilkins.

    Google Scholar 

  35. D’Orsi, C., et al. (2013). ACR BIRADS atlas, breast imaging reporting and data system. Preston: American College of Radiology.

    Google Scholar 

  36. Lynch, J. (2007). The Breast: cross section scheme of the mammary gland. http://en.wikipedia.org/wiki/File:Breast_anatomy_normal_scheme.png.

  37. McCormack, V., & Silva, I. (2006). Breast density and parenchymal patterns as markers of breast cancer risk: A meta-analysis. Cancer Epidemiology, Biomarkers and Prevention, 15, 1159–1169.

    Article  Google Scholar 

  38. World cancer report (2008). (International Agency for Research on Cancer, Lyon, 2008)

    Google Scholar 

  39. Coleman, M., et al. (2008). Cancer survival in five continents: A worldwide population-based study. The Lancet Oncology, 9, 730–756.

    Article  Google Scholar 

  40. Campeau, P., Foulkes, W., & Tischkowitz, M. (2008). Hereditary breast cancer: New genetic developments, new therapeutic avenues. Human Genetics, 124, 31–42.

    Article  Google Scholar 

  41. Duncan, J., Reeves, J., & Cooke, T. (1998). BRCA1 and BRCA2 proteins: Roles in health and disease. Molecular Pathology, 51, 237–247.

    Article  Google Scholar 

  42. Friedenson, B. (2007). The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer, 7, 152–162.

    Article  Google Scholar 

  43. Kumar, A., Bhatia, V., & Henderson, I. (2005). Overdiagnosis and overtreatment of breast cancer: Rates of ductal carcinoma in situ: A US perspective. Breast Cancer Research, 7, 271–275.

    Article  Google Scholar 

  44. Jayasinghe, J., & Simmons, P. (2009). Fibroadenomas in adolescence. Current Opinion in Obstetrics and Gynecology, 21, 402–406.

    Article  Google Scholar 

  45. Bellon, J., et al. (2004). Evaluation of the internal mammary lymph nodes by FDG-PET in locally advanced breast cancer. American Journal of Clinical Oncology, 27, 407–410.

    Article  Google Scholar 

  46. Mammakarzinom der Frau: Diagnostik, Therapie und Nachsorge – S3 Leitlinie Mammakarzinom. (AWMF, 2012).

    Google Scholar 

  47. Denoix, P. (1946). Enquete permanent dans les centres anticancereaux. Bulletin - Institut National d’Hygiene, 1, 70–75.

    Google Scholar 

  48. Massarut, S., et al. (2006). Intraoperative radiotherapy impairs breast cancer cell motility induced by surgical wound fluid. Journal of Clinical Oncology, 24, 10611.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hermann Scherer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scherer, K.H. (2016). Introduction and Theoretical Background. In: Grating-Based X-Ray Phase-Contrast Mammography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39537-1_2

Download citation

Publish with us

Policies and ethics