Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 466 Accesses

Abstract

In the year 1895, Wilhelm Röntgen discovered a novel electromagnetic radiation while investigating cathode rays, which he signified with an “X” for being of yet unknown type [1]. By accident, he found that the latter yield the capability of penetrating black paper which is typically opaque for visible light. This observation prompted him to repeat the experiments with optically intransparent matter. Utilizing a photographic plate, Röntgen managed to retrieve the first radiography of a human hand and phalanges, by which he unwittingly laid the foundation for all modern X-ray applications, including medical diagnostics, non-destructive testing, security screening and fundamental research. For a very long time, X-rays were solely utilized to reveal high density-fluctuations within a sample, by simply mapping differences in the transmission of photons through the investigated specimen, using photosensitive plates and later electronic detectors.

Ich fand ganz zufällig, dass die Strahlen schwarzes Papier durchdringen.

Wilhelm Röntgen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novelline, R. (1997). Squire’s fundamentals of radiology. Cambridge: Harvard University Press.

    Google Scholar 

  2. Quekett, J. (1852). A Practical treatise on the use of the microscope. London: H. Bailliere.

    Google Scholar 

  3. Wheeler, R. (2010). Micrograph of Whatman lens tissue paper. Bright/Dark-field illumination. http://de.wikipedia.org/wiki/File:Paper_Micrograph_Bright/Dark.png.

  4. Zernike, F. (1942). Phase-contrast, a new method for microscopic observation of transparent objects. Physica, 9, 974–986.

    Article  ADS  Google Scholar 

  5. Zernike, F. (1955). How I discovered phase contrast. Science, 121, 345–349.

    Google Scholar 

  6. Bonse, U., & Hart, M. (1965). An X-ray interferometer. Applied Physics Letters, 6, 155–157.

    Article  ADS  Google Scholar 

  7. Davis, T., et al. (1995). Phase-contrast imaging of weakly absorbing materials using hard X-rays. Nature, 373, 595–598.

    Article  ADS  Google Scholar 

  8. Chapman, L., et al. (1997). Diffraction enhanced X-ray imaging. Physics in Medicine and Biology, 42, 2015–2025.

    Article  ADS  Google Scholar 

  9. Snigirev, A., et al. (1995). On the possibility of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation. Review of Scientific Instruments, 66, 5486–5492.

    Article  ADS  Google Scholar 

  10. Wilkins, S., et al. (1996). Phase-contrast imaging using polychromatic hard X-rays. Nature, 384, 335–338.

    Article  ADS  Google Scholar 

  11. David, C., Nöhammer, B., & Ziegler, E. (2002). Differential X-ray phase contrast imaging using a shearing interferometer. Applied Physics Letters, 81, 3287–3290.

    Article  ADS  Google Scholar 

  12. Takeda, T., et al. (2002). Vessel imaging by interferometric phase-contrast X-ray technique. Circulation, 105, 1708–1712.

    Article  Google Scholar 

  13. Bevins, N., Zambelli, J., Li, K., Qi, Z., & Chen, G. (2012). Multicontrast X-ray computed tomography imaging using Talbot-Lau interferometry without phase stepping. Medical Physics, 39, 424–428.

    Article  ADS  Google Scholar 

  14. Pfeiffer, F., Weitkamp, T., Bunk, O., & David, C. (2006). Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nature Physics, 2, 258–261.

    Article  ADS  Google Scholar 

  15. Pfeiffer, F., Kottler, C., Bunk, O., & David, C. (2007). Hard X-Ray phase tomography with low-brilliance sources. Physics Review Letters, 98, 108105.

    Article  ADS  Google Scholar 

  16. Pfeiffer, F., et al. (2008). Hard-X-ray dark-field imaging using a grating interferometer. Nature Materials, 7, 134–137.

    Article  ADS  Google Scholar 

  17. Yaroshenko, A., et al. (2013). Pulmonary emphysema diagnosis with a preclinical small-animal X-ray dark-field scatter-contrast scanner. Radiology, 269, 427–433.

    Article  Google Scholar 

  18. Eggl, E., et al. (2015). Prediction of vertebral failure load by using X-ray vector radiographic imaging. Radiology, 275, 553–561.

    Article  Google Scholar 

  19. Hetterich, H., et al. (2014). Phase-Contrast CT: qualitative and quantitative evaluation of atherosclerotic carotid artery plaque. Radiology, 271, 870–878.

    Article  Google Scholar 

  20. Bech, M., et al. (2013). In-vivo dark-field and phase-contrast X-ray imaging. Scientific Reports, 3, 3209.

    Article  ADS  Google Scholar 

  21. Koehler, T., et al. (2015). Slit-scanning differential X-ray phase-contrast mammography: proof-of-concept experimental studies. Medical Physics, 42, 1959–1965.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hermann Scherer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scherer, K.H. (2016). Preamble. In: Grating-Based X-Ray Phase-Contrast Mammography. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39537-1_1

Download citation

Publish with us

Policies and ethics