Skip to main content

Substrate Development of the Imaging of Amyloid Proteins with SPM Methods

  • Chapter
  • First Online:
Nanoscale Imaging and Characterisation of Amyloid-β

Part of the book series: Springer Theses ((Springer Theses))

  • 366 Accesses

Abstract

It was essential to the work in this thesis to design a stable and reliable method of generating samples of Aβ for imaging with SPM techniques. This first body of work details this development. The approach taken was either to modify the substrate or the buffer system used to incubate the peptide for aggregation. The outcomes of these experiments are discussed, along with the final methodology for substrate attachment. A detailed analysis of the effect and interaction of this substrate and Aβ is also discussed. This chapter laid the foundation for subsequent work with SPM, and adaption of this system to other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayes, J., et al. (2014). beta-amyloid fibrils in alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. Journal of Biological Chemistry, 289, 12052–12062.

    Article  Google Scholar 

  2. Levine, H. (1993). Thioflavine-T interaction with synthetic alzheimers-disease beta-amyloid peptides—detection of amyloid aggregation in solution. Protein Science, 2, 404–410.

    Article  Google Scholar 

  3. Zhu, M., Souillac, P. O., Ionescu-Zanetti, C., Carter, S. A., & Fink, A. L. (2002). Surface-catalyzed amyloid fibril formation. Journal of Biological Chemistry, 277, 50914–50922.

    Article  Google Scholar 

  4. Gosal, W. S., Myers, S. L., Radford, S. E., & Thomson, N. H. (2006). Amyloid under the atomic force microscope. Protein and Peptide Letters, 13, 261–270.

    Article  Google Scholar 

  5. Arimon, M., et al. (2005). Fine structure study of A beta(1–42) fibrillogenesis with atomic force microscopy. Faseb Journal, 19, 1344.

    Google Scholar 

  6. May, P. C., et al. (1992). β-amyloid peptide in vitro toxicity: Lot-to-lot variability. Neurobiology of Aging, 13, 605–607.

    Article  Google Scholar 

  7. Arimon, M., Sanz, F., Giralt, E., & Carulla, N. (2012). Template-assisted lateral growth of amyloid-beta 42 fibrils studied by differential labeling with gold nanoparticles. Bioconjugate Chemistry, 23, 27–32.

    Article  Google Scholar 

  8. Gaines, G. L., & Tabor, D. (1956). Surface adhesion and elastic properties of mica. Nature, 178, 1304–1305.

    Article  ADS  Google Scholar 

  9. Zagorski, M. G., & Barrow, C. J. (1992). NMR-studies of amyloid beta-peptides—proton assignments, secondary structure, and mechanism of an alpha-helix–beta-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry, 31, 5621–5631.

    Article  Google Scholar 

  10. Zagorski, M. G., et al. (1999). Methodological and chemical factors affecting amyloid beta peptide amyloidogenicity. Amyloid, Prions, and Other Protein Aggregates, 309, 189–204.

    Article  Google Scholar 

  11. Orlando, R., Kenny, P. T. M., & Zagorski, M. G. (1992). Covalent modification of Alzheimer’s amyloid β-peptide in formic acid solutions. Biochemical and Biophysical Research Communications, 184, 686–691.

    Article  Google Scholar 

  12. Kirshenbaum, K., & Daggett, V. (1995). pH-dependent conformations of the amyloid beta(1–28) peptide fragment explored using molecular-dynamics. Biochemistry, 34, 7629–7639.

    Article  Google Scholar 

  13. Parbhu, A., Lin, H., Thimm, J., & Lal, R. (2002). Imaging real-time aggregation of amyloid beta protein (1–42) by atomic force microscopy. Peptides, 23, 1265–1270.

    Article  Google Scholar 

  14. Harper, J. D., Wong, S. S., Lieber, C. M., & Lansbury, P. T. (1999). Assembly of A beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer’s disease. Biochemistry, 38, 8972–8980.

    Article  Google Scholar 

  15. Bezanilla, M., Manne, S., Laney, D. E., Lyubchenko, Y. L., & Hansma, H. G. (1995). Adsorption of dna to mica, silylated mice, and minerals—characterization by atomic-force microscopy. Langmuir, 11, 655–659.

    Article  Google Scholar 

  16. Wang, H. D., et al. (2002). Glutaraldehyde modified mica: A new surface for atomic force microscopy of chromatin. Biophysical Journal, 83, 3619–3625.

    Article  ADS  Google Scholar 

  17. Hansma, H. G., & Laney, D. E. (1996). DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophysical Journal, 70, 1933–1939.

    Article  ADS  Google Scholar 

  18. Sherratt, M. J., Baldock, C., Morgan, A., & Kielty, C. M. (2007). The morphology of adsorbed extracellular matrix assemblies is critically dependent on solution calcium concentration. Matrix Biology, 26, 156–166.

    Article  Google Scholar 

  19. Cizas, P., et al. (2010). Size-dependent neurotoxicity of beta-amyloid oligomers. Archives of Biochemistry and Biophysics, 496, 84–92.

    Article  Google Scholar 

  20. Moores, B., Drolle, E., Attwood, S. J., Simons, J., & Leonenko, Z. (2011). Effect of surfaces on amyloid fibril formation. PLoS ONE, 6, 8.

    Article  Google Scholar 

  21. Lin, H., Zhu, Y. W. J., & Lal, R. (1999). Amyloid beta protein (1–40) forms calcium-permeable, Zn2+-sensitive channel in reconstituted lipid vesicles. Biochemistry, 38, 11189–11196.

    Article  Google Scholar 

  22. Sherratt, M. J., et al. (2003). Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. Journal of Molecular Biology, 332, 183–193.

    Article  Google Scholar 

  23. Bussiek, M., Mucke, N., & Langowski, J. (2003). Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Research, 31.

    Google Scholar 

  24. Hatters, D. M., et al. (2003). The circularization of amyloid fibrils formed by apolipoprotein C-II. Biophysical Journal, 85, 3979–3990.

    Article  ADS  Google Scholar 

  25. van Bommel, K.J.C., Jung, J.H., & Shinkai, S. (2001). Poly(l-lysine) aggregates as templates for the formation of hollow silica spheres. Advanced Materials, 13, 1472.

    Google Scholar 

  26. Greenfield, N. J., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8, 4108–4116.

    Article  Google Scholar 

  27. Nguyen, K. V., Gendrault, J.-L., & Wolff, C.-M. (2002). Poly-l-lysine dissolves fibrillar aggregation of the Alzheimer β-amyloid peptide in vitro. Biochemical and Biophysical Research Communications, 291, 764–768.

    Article  Google Scholar 

  28. Fowler, S. B., et al. (2002). Mechanical unfolding of a titin Ig domain: Structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. Journal of Molecular Biology, 322, 841–849.

    Article  Google Scholar 

  29. Russo, C. J., & Passmore, L. A. (2014). Ultrastable gold substrates for electron cryomicroscopy. Science, 346, 1377–1380.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Louisa Tinker-Mill .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tinker-Mill, C.L. (2016). Substrate Development of the Imaging of Amyloid Proteins with SPM Methods. In: Nanoscale Imaging and Characterisation of Amyloid-β. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39534-0_5

Download citation

Publish with us

Policies and ethics