Skip to main content

Alzheimer’s Disease and the Aggregation of Amyloid β

  • Chapter
  • First Online:
Nanoscale Imaging and Characterisation of Amyloid-β

Part of the book series: Springer Theses ((Springer Theses))

  • 387 Accesses

Abstract

This chapter focuses on Alzheimer’s disease, which is caused by the accumulation and aggregation of Aβ. The neuropathology and biochemical processes behind the disease are discussed along with therapeutic strategies. It is the aim of this chapter, to convey the seriousness of AD as a worldwide disorder and explore it’s pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoji, M., et al. (1992). Production of the Alzheimer amyloid-beta protein by normal proteolytic processing. Science, 258, 126–129.

    Article  ADS  Google Scholar 

  2. Gosal, W. S., Myers, S. L., Radford, S. E., & Thomson, N. H. (2006). Amyloid under the atomic force microscope. Protein and Peptide Letters, 13, 261–270.

    Article  Google Scholar 

  3. Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4, 49–60.

    Article  Google Scholar 

  4. Rochet, J. C., & Lansbury, P. T. (2000). Amyloid fibrillogenesis: themes and variations. Current Opinion in Structural Biology, 10, 60–68.

    Article  Google Scholar 

  5. Blennow, K., de Leon, M. J., & Zetterberg, H. (2006). Alzheimer’s disease. Lancet, 368, 387–403.

    Article  Google Scholar 

  6. Selkoe, D. J. (2001). Alzheimer’s disease: Genes, proteins, and therapy. Physiological Reviews, 81, 741–766.

    Google Scholar 

  7. Citron, M. (2002). Beta-secretase as a target for the treatment of Alzheimer’s disease. Journal of Neuroscience Research, 70, 373–379.

    Article  Google Scholar 

  8. Games, D., et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature, 373, 523–527.

    Article  ADS  Google Scholar 

  9. Wurtman, R. (2015). Biomarkers in the diagnosis and management of Alzheimer’s disease. Metabolism, 64, S47–S50.

    Article  Google Scholar 

  10. Eckerstrom, C., et al. (2013). A combination of neuropsychological, neuroimaging, and cerebrospinal fluid markers predicts conversion from mild cognitive impairment to dementia. Journal of Alzheimer’s Disease, 36, 421–431.

    Google Scholar 

  11. Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183–194.

    Article  Google Scholar 

  12. Harper, J. D., & Lansbury, P. T. (1997). Models of amyloid seeding in Alzheimier’s disease and scrapie: Mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annual Review of Biochemistry, 66, 385–407.

    Article  Google Scholar 

  13. Glenner, G. G., & Wong, C. W. (1984). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120, 885–890.

    Article  Google Scholar 

  14. Knauer, M. F., Soreghan, B., Burdick, D., Kosmoski, J., & Glabe, C. G. (1992). Intracellular accumulation and resistance to degradation of the Alzheimer amyloid A4/beta-protein. Proceedings of the National Academy of Sciences of the United States of America, 89, 7437–7441.

    Article  ADS  Google Scholar 

  15. Burdick, D., et al. (1992). Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. Journal of Biological Chemistry, 267, 546–554.

    Google Scholar 

  16. Kidd, M. (1963). Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature, 197, 192–193.

    Article  ADS  Google Scholar 

  17. Thies, W., & Bleiler, L. (2013). Alzheimer’s disease facts and figures. Alzheimers & Dementia, 9, 208–245.

    Article  Google Scholar 

  18. Corrada, M. M., Brookmeyer, R., Paganini-Hill, A., Berlau, D., & Kawas, C. H. (2010). Dementia incidence continues to increase with age in the oldest old the 90+ study. Annals of Neurology, 67, 114–121.

    Article  Google Scholar 

  19. Prince, M., Knapp, M, Guerchet, M. M. P, Prina, M., Comas-Herrera, A., Wittenberg, R., et al. (2014). Alzheimer’s Society.

    Google Scholar 

  20. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimers & Dementia, 3, 186–191.

    Article  Google Scholar 

  21. Schellenberg, G. D., & Montine, T. J. (2012). The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathologica, 124, 305–323.

    Article  Google Scholar 

  22. Lambert, J. C., & Amouyel, P. (2007). Genetic heterogeneity of Alzheimer’s disease: Complexity and advances. Psychoneuroendocrinology, 32(Suppl 1), S62–S70.

    Article  Google Scholar 

  23. Tang, T.-C., et al. (2014). Conformational changes induced by the A21G Flemish mutation in the amyloid precursor protein lead to increased A beta production. Structure, 22, 387–396.

    Article  Google Scholar 

  24. Muller, U., Winter, P., & Graeber, M. B. (2013). A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurology, 12, 129–130.

    Article  Google Scholar 

  25. Jonsson, T., et al. (2012). A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature, 488, 96–99.

    Article  ADS  Google Scholar 

  26. Corder, E. H., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921–923.

    Article  ADS  Google Scholar 

  27. Walsh, D. M., & Selkoe, D. J. (2007). A beta oligomers—A decade of discovery. Journal of Neurochemistry, 101, 1172–1184.

    Article  Google Scholar 

  28. Holtzman, D. M., et al. (2000). Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97, 2892–2897.

    Article  ADS  Google Scholar 

  29. Lauderback, C. M., et al. (2002). Apolipoprotein E modulates Alzheimer’s Abeta(1–42)-induced oxidative damage to synaptosomes in an allele-specific manner. Brain Research, 924, 90–97.

    Article  Google Scholar 

  30. Cao, X. W., & Sudhof, T. C. (2001). A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60. Science, 293, 115–120.

    Article  Google Scholar 

  31. Mattson, M. P., et al. (1993). Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron, 10, 243–254.

    Article  Google Scholar 

  32. Barnham, K. J., et al. (2003). Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. Journal of Biological Chemistry, 278, 17401–17407.

    Article  Google Scholar 

  33. Small, D. H., et al. (1994). A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. Journal of Neuroscience, 14, 2117–2127.

    Google Scholar 

  34. Hardy, J. (1997). The ‘amyloid cascade hypothesis’ of AD: Decoy or real McCoy? Reply. Trends in Neurosciences, 20, 558–559.

    Article  Google Scholar 

  35. White, A. R., et al. (1999). Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Research, 842, 439–444.

    Article  Google Scholar 

  36. Lichtenthaler, S. F., Haass, C., & Steiner, H. (2011). Regulated intramembrane proteolysis—Lessons from amyloid precursor protein processing. Journal of Neurochemistry, 117, 779–796.

    Article  Google Scholar 

  37. Zhang, H., Ma, Q. L., Zhang, Y. W., & Xu, H. X. (2012). Proteolytic processing of Alzheimer’s ss-amyloid precursor protein. Journal of Neurochemistry, 120, 9–21.

    Article  Google Scholar 

  38. Grimm, M. O. W., Rothhaar, T. L., & Hartmann, T. (2012). The role of APP proteolytic processing in lipid metabolism. Experimental Brain Research, 217, 365–375.

    Article  Google Scholar 

  39. Citron, M., Teplow, D. B., & Selkoe, D. J. (1995). Generation of amyloid-beta protein from its precursor is sequence-specific. Neuron, 14, 661–670.

    Article  Google Scholar 

  40. De Strooper, B. (2003). Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-secretase complex. Neuron, 38, 9–12.

    Article  Google Scholar 

  41. Schroeter, E. H., et al. (2003). A presenilin dimer at the core of the gamma-secretase enzyme: Insights from parallel analysis of Notch 1 and APP proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 100, 13075–13080.

    Article  ADS  Google Scholar 

  42. Zheng, H., & Koo, E. H. (2011). Biology and pathophysiology of the amyloid precursor protein. Molecular Neurodegeneration, 6.

    Google Scholar 

  43. Farzan, M., Schnitzler, C. E., Vasilieva, N., Leung, D., & Choe, H. (2000). BACE2, a beta-secretase homolog, cleaves at the beta site and within the amyloid-beta region of the amyloid-beta precursor protein. Proceedings of the National Academy of Sciences of the United States of America, 97, 9712–9717.

    Article  ADS  Google Scholar 

  44. Yagishita, S., Morishima-Kawashima, M., Ishiura, S., & Ihara, Y. (2008). A beta 46 is processed to A beta 40 and A beta 43, but not to A beta 42, in the low density membrane domains. Journal of Biological Chemistry, 283, 733–738.

    Article  Google Scholar 

  45. Qi-Takahara, Y., et al. (2005). Longer forms of amyloid beta protein: Implications for the mechanism of intramembrane cleavage by gamma-secretase. Journal of Neuroscience, 25, 436–445.

    Article  Google Scholar 

  46. Walsh, D. M., et al. (1999). Amyloid beta-protein fibrillogenesis—Structure and biological activity of protofibrillar intermediates. Journal of Biological Chemistry, 274, 25945–25952.

    Article  Google Scholar 

  47. Hardy, J. A., & Higgins, G. A. (1992). Alzheimers-disease—The amyloid cascade hypothesis. Science, 256, 184–185.

    Article  ADS  Google Scholar 

  48. Hardy, J., & Allsop, D. (1991). Amyloid deposition as the central event in the etiology of Alzheimers-disease. Trends in Pharmacological Sciences, 12, 383–388.

    Article  Google Scholar 

  49. Selkoe, D. J. (1999). Proteolysis of integral membrane proteins and the mechanism of Alzheimer’s disease. Molecular Biology of the Cell, 10, 351A–351A.

    Google Scholar 

  50. Lomakin, A., Teplow, D. B., Kirschner, D. A., & Benedek, G. B. (1997). Kinetic theory of fibrillogenesis of amyloid beta-protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 7942–7947.

    Article  ADS  Google Scholar 

  51. Chiti, F., et al. (1999). Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proceedings of the National Academy of Sciences of the United States of America, 96, 3590–3594.

    Article  ADS  Google Scholar 

  52. Nelson, R., et al. (2005). Structure of the cross-beta spine of amyloid-like fibrils. Nature, 435, 773–778.

    Article  ADS  Google Scholar 

  53. Zagorski, M. G., & Barrow, C. J. (1992). NMR-studies of amyloid beta-peptides—proton assignments, secondary structure, and mechanism of an alpha-helix—beta-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry, 31, 5621–5631.

    Article  Google Scholar 

  54. Petkova, A. T., et al. (2002). A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proceedings of the National Academy of Sciences of the United States of America, 99, 16742–16747.

    Article  ADS  Google Scholar 

  55. Di Carlo, M. (2010). Beta amyloid peptide: From different aggregation forms to the activation of different biochemical pathways. European Biophysics Journal with Biophysics Letters, 39, 877–888.

    Article  Google Scholar 

  56. Karsai, A., et al. (2006). Mechanical manipulation of Alzheimer’s amyloid beta 1–42 fibrils. Journal of Structural Biology, 155, 316–326.

    Article  Google Scholar 

  57. Hoyer, W., & Hard, T. (2008). Interaction of Alzheimer’s A beta peptide with an engineered binding protein—Thermodynamics and kinetics of coupled folding-binding. Journal of Molecular Biology, 378, 398–411.

    Article  Google Scholar 

  58. Guo, M., Gorman, P. M., Rico, M., Chakrabartty, A., & Laurents, D. V. (2005). Charge substitution shows that repulsive electrostatic interactions impede the oligomerization of Alzheimer amyloid peptides. FEBS Letters, 579, 3574–3578.

    Article  Google Scholar 

  59. Bitan, G., et al. (2003). Amyloid beta-protein (A beta) assembly: A beta 40 and A beta 42 oligomerize through distinct pathways. Proceedings of the National Academy of Sciences of the United States of America, 100, 330–335.

    Article  ADS  Google Scholar 

  60. Lazo, N. D., Grant, M. A., Condron, M. C., Rigby, A. C., & Teplow, D. B. (2005). On the nucleation of amyloid β-protein monomer folding. Protein Science, 14, 1581–1596.

    Article  Google Scholar 

  61. Schmidt, M., et al. (2009). Comparison of Alzheimer Aβ(1–40) and Aβ(1–42) amyloid fibrils reveals similar protofilament structures. Proceedings of the National Academy of Sciences of the United States of America, 106, 19813–19818.

    Article  Google Scholar 

  62. Zhang, R., et al. (2009). Interprotofilament interactions between Alzheimer’s A beta(1–42) peptides in amyloid fibrils revealed by cryoEM. Proceedings of the National Academy of Sciences of the United States of America, 106, 4653–4658.

    Article  ADS  Google Scholar 

  63. Harper, J. D., Wong, S. S., Lieber, C. M., & Lansbury, P. T. (1997). Observation of metastable A beta amyloid protofibrils by atomic force microscopy. Chemistry & Biology, 4, 119–125.

    Article  Google Scholar 

  64. Miyakawa, T., Watanabe, K., & Katsuragi, S. (1986). Ultrastructure of amyloid fibrils in Alzheimers-disease and downs-syndrome. Virchows Archiv B-Cell Pathology Including Molecular Pathology, 52, 99–106.

    Article  Google Scholar 

  65. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  ADS  Google Scholar 

  66. Armstrong, R. A. (2014). A critical analysis of the ‘amyloid cascade hypothesis’. Folia Neuropathologica, 52, 211–225.

    Article  Google Scholar 

  67. Tabner, B. J., El-Agnaf, O. M. A., German, M. J., Fullwood, N. J., & Allsop, D. (2005). Protein aggregation, metals and oxidative stress in neurodegenerative diseases. Biochemical Society Transactions, 33, 1082–1086.

    Article  Google Scholar 

  68. Shankar, G. M., & Walsh, D. M. (2009). Alzheimer’s disease: Synaptic dysfunction and A beta. Molecular Neurodegeneration, 4.

    Google Scholar 

  69. Shankar, G. M., et al. (2008). Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Medicine, 14, 837–842.

    Article  Google Scholar 

  70. Shankar, G. M., et al. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. Journal of Neuroscience, 27, 2866–2875.

    Article  Google Scholar 

  71. Welzel, A. T., et al. (2014). Secreted amyloid beta-proteins in a cell culture model include N-terminally extended peptides that impair synaptic plasticity. Biochemistry, 53, 3908–3921.

    Article  Google Scholar 

  72. Walsh, D. M., et al. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535–539.

    Article  ADS  Google Scholar 

  73. Lacor, P. N., et al. (2007). A beta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.

    Article  Google Scholar 

  74. Klyubin, I., et al. (2005). Amyloid beta protein immunotherapy neutralizes A beta oligomers that disrupt synaptic plasticity in vivo. Nature Medicine, 11, 556–561.

    Article  Google Scholar 

  75. O’Malley, T. T., et al. (2014). A beta dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochemical Journal, 461, 413–426.

    Article  Google Scholar 

  76. Borlikova, G. G., et al. (2013). Alzheimer brain-derived amyloid beta-protein impairs synaptic remodeling and memory consolidation. Neurobiology of Aging, 34, 1315–1327.

    Article  Google Scholar 

  77. Shrestha, B. R., et al. (2006). Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Molecular and Cellular Neuroscience, 33, 274–282.

    Article  Google Scholar 

  78. Tabner, B. J., et al. (2005). Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. Journal of Biological Chemistry, 280, 35789–35792.

    Article  Google Scholar 

  79. Mayes, J., et al. (2014). Beta-amyloid fibrils in Alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. Journal of Biological Chemistry, 289, 12052–12062.

    Article  Google Scholar 

  80. Opazo, C., et al. (2002). Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid—Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. Journal of Biological Chemistry, 277, 40302–40308.

    Article  Google Scholar 

  81. Dikalov, S. I., Vitek, M. P., & Mason, R. P. (2004). Cupric-amyloid beta peptide complex stimulates oxidation of ascorbate and generation of hydroxyl radical. Free Radical Biology and Medicine, 36, 340–347.

    Article  Google Scholar 

  82. Turnbull, S., et al. (2001). Alpha-synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radical Biology and Medicine, 30, 1163–1170.

    Article  Google Scholar 

  83. El Khoury, Y., Dorlet, P., Faller, P., & Hellwig, P. (2011). New insights into the coordination of Cu(II) by the amyloid-B 16 peptide from fourier transform IR spectroscopy and isotopic labeling. The Journal of Physical Chemistry B, 115, 14812–14821.

    Article  Google Scholar 

  84. Castello, M. A., Jeppson, J. D., & Soriano, S. (2014). Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease. BMC Neurology, 14.

    Google Scholar 

  85. Jack, C. R, Jr., et al. (2013). Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology, 81, 1732–1740.

    Article  Google Scholar 

  86. Hyman, B. T., et al. (2012). National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers & Dementia, 8, 1–13.

    Article  MathSciNet  Google Scholar 

  87. McGeer, P. L., & McGeer, E. G. (2013). The amyloid cascade-inflammatory hypothesis of Alzheimer disease: Implications for therapy. Acta Neuropathologica, 126, 479–497.

    Article  Google Scholar 

  88. Anand, R., Gill, K. D., & Mahdi, A. A. (2014). Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology, 76, 27–50.

    Article  Google Scholar 

  89. Liu-Seifert, H., et al. (2015). Cognitive and functional decline and their relationship in patients with mild Alzheimer’s dementia. Journal of Alzheimers Disease, 43, 949–955.

    Google Scholar 

  90. Loureiro, J. A., Gomes, B., Coelho, M. A. N., Pereira, M. D., & Rocha, S. (2014). Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies. Nanomedicine, 9, 709–722.

    Article  Google Scholar 

  91. Salvati, E., et al. (2013). Liposomes functionalized to overcome the blood-brain barrier and to target amyloid-beta peptide: The chemical design affects the permeability across an in vitro model. International Journal of Nanomedicine, 8.

    Google Scholar 

  92. Gobbi, M., et al. (2010). Lipid-based nanoparticles with high binding affinity for amyloid-beta(1–42) peptide. Biomaterials, 31, 6519–6529.

    Article  Google Scholar 

  93. Bereczki, E., Re, F., Masserini, M. E., Winblad, B., & Pei, J. J. (2011). Liposomes functionalized with acidic lipids rescue A beta-induced toxicity in murine neuroblastoma cells. Nanomedicine-Nanotechnology Biology and Medicine, 7, 560–571.

    Article  Google Scholar 

  94. Millucci, L., et al. (2012). Alkaptonuria is a novel human secondary amyloidogenic disease. Biochimica Et Biophysica Acta-Molecular Basis of Disease, 1822, 1682–1691.

    Article  Google Scholar 

  95. Huang, L., Liu, X., Cheng, B., & Huang, K. (2015). How our bodies fight amyloidosis: Effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Archives of Biochemistry and Biophysics, 568, 46–55.

    Article  Google Scholar 

  96. De Jong, K. L., Incledon, B., Yip, C. M., & DeFelippis, M. R. (2006). Amyloid Fibrils of Glucagon Characterized by High-Resolution Atomic Force Microscopy. Biophysical Journal, 91, 1905–1914.

    Google Scholar 

  97. Dong, M. D., et al. (2008). AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon. Nanotechnology, 19, 7.

    Google Scholar 

  98. Shammas, S. L., et al. (2011). Perturbation of the stability of amyloid fibrils through alteration of electrostatic interactions. Biophysical Journal, 100, 2783–2791.

    Article  ADS  Google Scholar 

  99. Millucci, L., et al. (2015). Amyloidosis in alkaptonuria. Journal of Inherited Metabolic Disease, 38, 797–805.

    Article  Google Scholar 

  100. Green, J. D., Goldsbury, C., Kistler, J., Cooper, G. J. S., & Aebi, U. (2004). Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation. The Journal of biological chemistry, 279, 12206.

    Article  Google Scholar 

  101. Ganchev, D. N., Cobb, N. J., Surewicz, K., & Surewicz, W. K. (2008). Nanomechanical properties of human prion protein amyloid as probed by force spectroscopy. Biophysical Journal, 95, 2909–2915.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Louisa Tinker-Mill .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tinker-Mill, C.L. (2016). Alzheimer’s Disease and the Aggregation of Amyloid β. In: Nanoscale Imaging and Characterisation of Amyloid-β. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-39534-0_3

Download citation

Publish with us

Policies and ethics