Advertisement

Distributions, Moments, and Statistics

  • Peter Schuster
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

The moments of probability distributions represent the link between theory and observations since they are readily accessible to measurement. Rather abstract-looking generating functions have become important as highly versatile concepts and tools for solving specific problems. The probability distributions which are most important in applications are reviewed. Then the central limit theorem and the law of large numbers are presented. The chapter is closed by a brief digression into mathematical statistics and shows how to handle real world samples that cover a part, sometimes only a small part, of sample space.

References

  1. 6.
    Adams, W.J.: The Life and Times of the Central Limit Theorem, History of Mathematics, vol. 35, 2nd edn. American Mathematical Society and London Mathematical Society, Providence, RI (2009). Articles by A. M. Lyapunov translated from the Russian by Hal McFaden.Google Scholar
  2. 8.
    Aldrich, J.: R. A. Fisher and the making of the maximum likelihood 1912–1922. Stat. Sci. 12, 162–176 (1997)Google Scholar
  3. 43.
    Bergström, H.: On some expansions of stable distribution functions. Ark. Math. 2, 375–378 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 81.
    Chechkin, A.V., Metzler, R., Klafter, J., Gonchar, V.Y.: Introduction to the theory of Lévy flights. In: R. Klages, G. Radons, I.M. Sokolov (eds.) Anomalous Transport: Foundations and Applications, chap. 5, pp. 129–162. Wiley-VCH Verlag GmbH, Weinheim, DE (2008)CrossRefGoogle Scholar
  5. 83.
    Chung, K.L.: A Course in Probability Theory, Probability and Mathematical Statistics, vol. 21, 2nd edn. Academic Press, New York (1974)Google Scholar
  6. 84.
    Chung, K.L.: Elementary Probability Theory with Stochastic Processes, 3rd edn. Springer, New York (1979)CrossRefzbMATHGoogle Scholar
  7. 85.
    Cochran, W.G.: The distribution of quadratic forms in normal systems, with applications to the analysis of covariance. Math. Proc. Camb. Philos. Soc. 30, 178–191 (1934)ADSCrossRefzbMATHGoogle Scholar
  8. 86.
    Conrad, K.: Probability distributions and maximum entropy. Expository paper, University of Connecticut, Storrs, CT (2005)Google Scholar
  9. 88.
    Cooper, B.E.: Statistics for Experimentalists. Pergamon Press, Oxford (1969)Google Scholar
  10. 90.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  11. 92.
    Cox, R.T.: The Algebra of Probable Inference. The John Hopkins Press, Baltimore (1961)zbMATHGoogle Scholar
  12. 94.
    Cramér, H.: Mathematical Methods of Statistics. Princeton Univ. Press, Priceton (1946)zbMATHGoogle Scholar
  13. 120.
    Eddy, S.R.: What is Bayesian statistics? Nat. Biotechnol. 22, 1177–1178 (2004)CrossRefGoogle Scholar
  14. 122.
    Edgeworth, F.Y.: On the probable errors of frequence-constants. J. R. Stat. Soc. 71, 381–397 (1908)CrossRefGoogle Scholar
  15. 124.
    Edgeworth, F.Y.: On the probable errors of frequence-constants (contd.). J. R. Stat. Soc. 71, 651–678 (1908)Google Scholar
  16. 142.
    Evans, M., Hastings, N.A.J., Peacock, J.B.: Statistical Distributions, 3rd edn. Wiley, New York (2000)zbMATHGoogle Scholar
  17. 157.
    Feller, W.: The general form of the so-called law of the iterated logarithm. Trans. Am. Math. Soc. 54, 373–402 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 160.
    Feller, W.: An Introduction to Probability Theory and Its Application, vol. I, 3rd edn. Wiley, New York (1968)Google Scholar
  19. 169.
    Fisher, R.A.: On an absolute criterion for fitting frequency curves. Messeng. Math. 41, 155–160 (1912)Google Scholar
  20. 170.
    Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222, 309–368 (1922)ADSCrossRefzbMATHGoogle Scholar
  21. 171.
    Fisher, R.A.: Applications of “Student’s” distribution. Metron 5, 90–104 (1925)zbMATHGoogle Scholar
  22. 172.
    Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700–725 (1925)ADSCrossRefzbMATHGoogle Scholar
  23. 173.
    Fisher, R.A.: Moments and product moments of sampling distributions. Proc. Lond. Math. Soc. Ser.2, 30, 199–238 (1928)Google Scholar
  24. 175.
    Fisher, R.A.: The logic of inductive inference. J. R. Stat. Soc. 98, 39–54 (1935)CrossRefzbMATHGoogle Scholar
  25. 179.
    Fisz, M.: Probability Theory and Mathematical Statistics, 3rd edn. Wiley, New York (1963)zbMATHGoogle Scholar
  26. 180.
    Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wissenschaft, Berlin (1989). In GermanzbMATHGoogle Scholar
  27. 182.
    Fofack, H., Nolan, J.P.: Tail behavior, modes and other characteristics of stable distributions. Extremes 2, 39–58 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 184.
    Foster, D.P.: Law of the iterated logarithm. Wikipedia entry, University of Pennsylvania, Philadelphia, PA (2009). Retrieved April 07, 2009 from en.wikipedia.org/wiki/Law_of_the_iterated_logarithmGoogle Scholar
  29. 191.
    Galton, F.: The geometric mean in vital and social statistics. Proc. Roy. Soc. Lond. 29, 365–367 (1879)CrossRefGoogle Scholar
  30. 197.
    Gauß, C.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Perthes et Besser, Hamburg (1809). English translation: Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections. Little, Brown. Boston, MA. 1857. Reprinted by Dover, New York (1963)Google Scholar
  31. 199.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Baysian Data Analysis, 2nd edn. Texts in Statistical Science. Chapman & Hall / CRC, Boca Raton (2004)Google Scholar
  32. 220.
    Gray, R.M.: Entropy and Information Theory, 2nd edn. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  33. 242.
    Hartman, P., Wintner, A.: On the law of the iterated logarithm. Am. J. Math. 63, 169–173 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 257.
    Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Statistics, 7th edn. Pearson Education, Upper Saddle River (2012)Google Scholar
  35. 258.
    Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference, 8th edn. Pearson – Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
  36. 279.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 280.
    Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 281.
    Jaynes, E.T.: Probability Theory. The Logic of Science. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  39. 284.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Probability and Mathematical Statistics. Applied Probability and Statistics, vol. 1, 2nd edn. Wiley, New York (1994)Google Scholar
  40. 285.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Probability and Mathematical Statistics. Applied Probability and Statistics, vol. 2, 2nd edn. Wiley, New York (1995)Google Scholar
  41. 295.
    Kenney, J.F., Keeping, E.S.: Mathematics of Statistics, 2nd edn. Van Nostrand, Princeton (1951)zbMATHGoogle Scholar
  42. 296.
    Kenney, J.F., Keeping, E.S.: The k-Statistics. In Mathematics of Statistics. Part I, §7.9, 3rd edn. Van Nostrand, Princeton (1962)Google Scholar
  43. 300.
    Khinchin, A.Y.: Über einen Satz der Wahrscheinlichkeitsrechnung. Fundam. Math. 6, 9–20 (1924). In GermanGoogle Scholar
  44. 308.
    Knuth, D.E.: Two notes on notation. Am. Math. Monthly 99, 403–422 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 309.
    Kolmogorov, A.N.: Über das Gesetz es interierten Logarithmus. Math. Ann. 101, 126–135 (1929). In GermanMathSciNetCrossRefGoogle Scholar
  46. 317.
    Kowalski, C.J.: Non-normal bivariate distributions with normal marginals. Am. Statistician 27, 103–106 (1973)Google Scholar
  47. 326.
    Laplace, P.S.: Mémoirs sur la probabilité des causes par les évènemens. Mémoires de Mathématique et de Physique, Presentés à l’Académie Royale des Sciences, par divers Savans & lûs dans ses Assemblées 6, 621–656 (1774). Reprinted in Laplace’s Ouevres complète 8, 27–65. English translation: Stat. Sci. 1, 364–378 (1986)Google Scholar
  48. 327.
    Laplace, P.S.: Théorie analytique des probabililtés. Courcies Imprimeur, Paris (1812)Google Scholar
  49. 331.
    Le Cam, L.: Maximum likelihood: An introduction. Int. Stat. Rev. 58, 153–171 (1990)CrossRefzbMATHGoogle Scholar
  50. 333.
    Lee, P.M.: Bayesian Statistics, 3rd edn. Hodder Arnold, London (2004)zbMATHGoogle Scholar
  51. 334.
    Leemis, L.: Poisson to normal. College of William & Mary, Department of Mathematics, Williamsburg, VA (2012). URL: www.math.wm.edu/~leemis/chart/UDR/PDFs/PoissonNormal.pdf
  52. 339.
    Lévy, P.: Calcul de probabilités. Geuthier-Villars, Paris (1925). In FrenchzbMATHGoogle Scholar
  53. 346.
    Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: Keys and clues. BioScience 51, 341–352 (2001)CrossRefGoogle Scholar
  54. 349.
    Lindeberg, J.W.: Über das Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. 16, 1–23 (1920). In German.Google Scholar
  55. 350.
    Lindeberg, J.W.: Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15, 211–225 (1922). In GermanMathSciNetCrossRefzbMATHGoogle Scholar
  56. 359.
    Lukacs, E.: Characteristic Functions. Hafner Publ. Co., New York (1970)zbMATHGoogle Scholar
  57. 360.
    Lukacs, E.: A survey of the theory of characteristic functions. Adv. Appl. Probab. 4, 1–38 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 361.
    Lyapunov, A.M.: Sur une proposition de la théorie des probabilités. Bull. Acad. Imp. Sci. St. Pétersbourg 13, 359–386 (1900)Google Scholar
  59. 362.
    Lyapunov, A.M.: Nouvelle forme du théorème sur la limite des probabilités. Mem. Acad. Imp. Sci. St. Pétersbourg, Classe Phys. Math. 12, 1–24 (1901)Google Scholar
  60. 365.
    Mallows, C.: Anothre comment on O’Cinneide. Am. Statistician 45, 257 (1991)Google Scholar
  61. 378.
    McAlister, D.: The law of the geometric mean. Proc. R. Soc. Lond. 29, 367–376 (1879)CrossRefGoogle Scholar
  62. 380.
    McKean, Jr., H.P.: Stochastic Integrals. Wiley, New York (1969)zbMATHGoogle Scholar
  63. 391.
    Melnick, E.L., Tenenbein, A.: Misspecifications of the normal distribution. Am. Statistician 36, 372–373 (1982)Google Scholar
  64. 394.
    Merkle, M.: Jensen’s inequality for medians. Stat. Probab. Lett. 71, 277–281 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 423.
    Nolan, J.P.: Stable Distributions: Models for Heavy-Tailed Data. Birkhäuser, Boston (2013). Unfinished manuscript. Online at academic2.american.edu/~jpnolan
  66. 424.
    Norden, R.H.: A survey of maximum likelihood estimation I. Int. Stat. Rev. 40, 329–354 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 425.
    Norden, R.H.: A survey of maximum likelihood estimation II. Int. Stat. Rev. 41, 39–58 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 438.
    Park, S.Y., Bera, A.K.: Maximum entropy autoregressive conditional heteroskedasticy model. J. Econ. 150, 219–230 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 441.
    Pearson, E.S., Wishart, J.: “Student’s” Collected Papers. Cambridge University Press, Cambridge (1942). Cambridge University Press for the Biometrika TrusteesGoogle Scholar
  70. 445.
    Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)ADSCrossRefzbMATHGoogle Scholar
  71. 446.
    Pearson, K.: Notes on the history of correlation. Biometrika 13, 25–45 (1920)CrossRefGoogle Scholar
  72. 447.
    Pearson, K., Filon, L.N.G.: Contributions to the mathematical theory of evolution. IV. On the probable errors of frequency constants and on the influence of random selection on variation and correlation. Philos. Trans. R. Soc. Lond. A 191, 229–311 (1898)zbMATHGoogle Scholar
  73. 454.
    Pollard, H.: The representatioin of \(e^{-x^{\lambda } }\) as a Laplace intgeral. Bull. Am. Math. Soc. 52, 908–910 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 458.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  75. 459.
    Price, R.: LII. an essay towards soliving a problem in the doctrine of chances. By the late Ref. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M.A. and F.R.S. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763)Google Scholar
  76. 463.
    Rao, C.R.: Information and the acuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)MathSciNetzbMATHGoogle Scholar
  77. 478.
    Schilling, M.F., Watkins, A.E., Watkins, W.: Is human height bimodal? Am. Statistician 56, 223–229 (2002)MathSciNetCrossRefGoogle Scholar
  78. 493.
    Seneta, E.: The central limit problem and lienear least squares in pre-revolutionary Russia: The background. Math. Scientist 9, 37–77 (1984)MathSciNetzbMATHGoogle Scholar
  79. 497.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  80. 498.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  81. 507.
    Stevens, J.W.: What is Bayesian Statistics? What is …? Hayward Medical Communications, a division of Hayward Group Ltd., London (2009)Google Scholar
  82. 508.
    Stigler, S.M.: Laplace’s 1774 memoir on inverse probability. Stat. Sci. 1, 359–378 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 509.
    Stigler, S.M.: The epic story of maximum likelihood. Stat. Sci. 22, 598–620 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 510.
    Stone, J.V.: Bayes’ Rule. A Tutorial to Bayesian Analysis. Sebtel Press, England (2013)zbMATHGoogle Scholar
  85. 514.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics. Volume 1: Distribution Theory, 5th edn. Charles Griffin & Co., London (1987)Google Scholar
  86. 515.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics. Volume 2: Classical Inference and Relationship, 5th edn. Edward Arnold, London (1991)Google Scholar
  87. 516.
    Student: The probable error of a mean. Biometrika 6, 1–25 (1908)Google Scholar
  88. 519.
    Swamee, P.K.: Near lognormal distribution. J. Hydrol. Eng. 7, 441–444 (2007)CrossRefGoogle Scholar
  89. 554.
    Volkenshtein, M.V.: Entropy and Information, Progress in Mathematical Physics, vol. 57. Birkhäuser Verlag, Basel, CH (2009). German version: W. Ebeling, Ed. Entropie und Information. Wissenschaftliche Taschenbücher, Band 306, Akademie-Verlag, Berlin (1990). Russian Edition: Nauka Publ., Moscow (1986)Google Scholar
  90. 563.
    Weber, N.A.: Dimorphism of the African oecophylla worker and an anomaly (hymenoptera formicidae). Ann. Entomol. Soc. Am. 39, 7–10 (1946)CrossRefGoogle Scholar
  91. 568.
    Weisstein, E.W.: Fourier Transform. MathWorld - A Wolfram Web Resource. The Wolfram Centre, Long Hanborough, UK. http://www.Mathworld.wolfram.com/FourierTransform.html, retrieved July 17, 2015

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Schuster
    • 1
  1. 1.Institut für Theoretische ChemieUniversität WienWienAustria

Personalised recommendations