Advertisement

Probability

  • Peter Schuster
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

Probabilistic thinking originated historically when people began to analyze the chances of success in gambling, and its mathematical foundations were laid down together with the development of statistics in the seventeenth century. Since the beginning of the twentieth century statistics has been an indispensable tool for bridging the gap between molecular motions and macroscopic observations. The classical notion of probability is based on counting and dealing with finite numbers of observations. Extrapolation to limiting values for hypothetical infinite numbers of observations is the basis of the frequentist interpretation, while more recently a subjective approach derived from the early works of Bayes has become useful for modeling and analyzing complex biological systems. The Bayesian interpretation of probability accounts explicitly for the incomplete but improvable knowledge of the experimenter. In the twentieth century, set theory became the ultimate basis of mathematics, thus constituting also the foundation of current probability theory, based on Kolmogorov’s axiomatization of 1933. The modern approach allows one to handle and compare finite, countably infinite, and also uncountable sets, the most important class, which underlie the proper consideration of continuous variables in set theory. In order to define probabilities for uncountable sets such as subsets of real numbers, we define Borel fields, families of subsets of sample space. The notion of random variables is central to the analysis of probabilities and applications to problem solving. Random variables are elements of discrete and countable or continuous and uncountable probability spaces. They are conventionally characterized by their distributions.

References

  1. 1.
    Aase, K.: A note on a singular diffusion equation in population genetics. J. Appl. Probab. 13, 1–8 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Abramowitz, M., Segun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)zbMATHGoogle Scholar
  3. 3.
    Abramson, M., Moser, W.O.J.: More birthday surprises. Am. Math. Monthly 77, 856–858 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Acton, F.S.: Numerical Methods That Work. Harper & Row, New York (1970)zbMATHGoogle Scholar
  5. 5.
    Acton, F.S.: Numerical Methods That (Usually) Work, fourth printing edn. Mathematical Association of America, Washington, DC (1990)Google Scholar
  6. 6.
    Adams, W.J.: The Life and Times of the Central Limit Theorem, History of Mathematics, vol. 35, 2nd edn. American Mathematical Society and London Mathematical Society, Providence, RI (2009). Articles by A. M. Lyapunov translated from the Russian by Hal McFaden.Google Scholar
  7. 7.
    Al-Soufi, W., Reija, B., Novo, M., Kelekyan, S., Kühnemuth, R., Seidel, C.A.M.: Fluorescence correlation sprctroscopy, a tool to inverstigate supramolecular dynamics: Inclusion complexes of pyronines with cyclodextrin. J. Am. Chem. Soc. 127, 8775–8784 (2005)CrossRefGoogle Scholar
  8. 8.
    Aldrich, J.: R. A. Fisher and the making of the maximum likelihood 1912–1922. Stat. Sci. 12, 162–176 (1997)Google Scholar
  9. 9.
    Alonso, D., McKane, A.J., Pascual, M.: Stochastic amplifications in epidemics. J. Roy. Soc. Interface 4, 575–582 (2007)CrossRefGoogle Scholar
  10. 10.
    Anderson, B.D.O.: Reverse-time diffusion equation models. Stoch. Process. Appl. 12, 313–326 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Anderson, D.F.: Incorporating postleap checks in tau-leaping. J. Chem. Phys. 128, e 054103 (2008)Google Scholar
  12. 12.
    Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Anderson, D.F., Ganguly, A., Kurtz, T.G.: Error analysis of tau-leap simulation methods. Ann. Appl. Probab. 6, 2226–2262 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Anderson, P.W.: More is different. Broken symmetry and the nature of the hierarchical stucture of science. Science 177, 393–396 (1972)Google Scholar
  15. 15.
    Anderson, R.M., May, R.M.: Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    Anderson, R.M., May, R.M.: Population biology of infectious diseases: Part II. Nature 280, 455–461 (1979)CrossRefGoogle Scholar
  17. 17.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York (1991)Google Scholar
  18. 18.
    Applebaum, D.: Lévy processes – From probability to finance and quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Aragón, S.R., Pecora, R.: Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14, 119–138 (1975)CrossRefGoogle Scholar
  20. 20.
    Arányi, P., Tóth, J.: A full stochastic description of the Michaelis-Menten reaction for small systems. Acta Biochim. et Biophys. Acad. Sci. Hung. 12, 375–388 (1977)Google Scholar
  21. 21.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, fifth edn. Harcourt Academic Press, San Diego (2001)Google Scholar
  22. 22.
    Arnold, L.: Stochastic Differential Equations. Theory and Applications. Wiley, New York (1974)zbMATHGoogle Scholar
  23. 23.
    Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998). Second corrected printing 2003Google Scholar
  24. 24.
    Arnold, L., Bleckert, G., Schenk-Hoppé, K.R.: The stochastic brusselator: Parametric noise destroys hopf bifurcation. In: Crauel, H., Gundlach, M. (eds.) Stochastic Dynamics, chap. 4, pp. 71–92. Springer, New York (1999)CrossRefGoogle Scholar
  25. 25.
    Arscott, F.M.: Heun’s equation. In: Ronveau, A. (ed.) Heun’s Differential Equations, pp. 3–86. Oxford University Press, New York (1955)Google Scholar
  26. 26.
    Arslan, E., Laurenzi, I.J.: Kinetics of autocatalysis in small systems. J. Chem. Phys. 128, e 015101 (2008)Google Scholar
  27. 27.
    Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algortihms and Analysis. Springer, New York (2007)zbMATHGoogle Scholar
  28. 28.
    Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Academic Press, Elsevier, Singapore (2013)zbMATHGoogle Scholar
  29. 29.
    Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Heidelberg, DE (1972)zbMATHCrossRefGoogle Scholar
  30. 30.
    Atkins, P.W., Friedman, R.S. (eds.): Molecular Quantum Mechanics, fifth edn. Oxford University Press, Oxford (2010)Google Scholar
  31. 31.
    Bachelier, L.: Théorie de la spéculation. Annales scientifiques de l’É.N.S. 3e série 17, 21–86 (1900)Google Scholar
  32. 32.
    Bailey, N.T.J.: A simple stochastic epidemic. Biometrika 37, 193–202 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Bailey, N.T.J.: The Elements of Stochastic Processes with Application in the Natural Sciences. Wiley, New York (1964)zbMATHGoogle Scholar
  34. 34.
    Bar-Eli, K., Noyes, R.M.: Detailed calculations of multiple steady states during oxidation of cerous ion by bromate in a stirred flow reactor. J. Phys. Chem. 82, 1352–1359 (1978)CrossRefGoogle Scholar
  35. 35.
    Bartholomay, A.F.: On the linear birth and death processes of biology as Markoff chains. Bull. Math. Biophys. 20, 97–118 (1958)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Bartholomay, A.F.: Stochastic models for chemical reactions: I. Theory of the unimolecular reaction process. Bull. Math. Biophys. 20, 175–190 (1958)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bartholomay, A.F.: Stochastic models for chemical reactions: II. The unimolecular rate constant. Bull. Math. Biophys. 21, 363–373 (1959)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Bartholomay, A.F.: A stochastic approach to statistical kinetics with applications to enzyme kinetics. Biochemistry 1, 223–230 (1962)CrossRefGoogle Scholar
  39. 39.
    Bartlett, M.S.: Stochastic processes or the statistics of change. J. R. Stat. Soc. C 2, 44–64 (1953)Google Scholar
  40. 40.
    Bazley, N.W., Montroll, E.W., Rubin, R.J., Shuler, K.E.: Studies in nonequilibrium rate processes: III. The vibrational relaxation of a system of anharmonic oscillators. J. Chem. Phys. 28, 700–704 (1958). Erratum: J.Chem.Phys., 29:1185–1186Google Scholar
  41. 41.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, fifth edn. W. H. Freeman and Company, New York (2002)Google Scholar
  42. 42.
    Berg, J.M., Tymoczko, J.L., Stryer, L.: Biochemistry, seventh edn. W. H. Freeman and Company, New York (2012)Google Scholar
  43. 43.
    Bergström, H.: On some expansions of stable distribution functions. Ark. Math. 2, 375–378 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Bernoulli, D.: Essai d’une nouvelle analyse de la mortaltié causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mém. Math. Phys. Acad. Roy. Sci.,Paris T5, 1–45 (1766). English translation: ‘An Attempt at a New Analysis of the Mortality Caused by Smallpox and of the Advantages of Inoculation to Prevent It.’ In: L. Bradley, Smallpox Inoculation: An Eighteenth Century Mathematical Controversy. Adult Education Department: Nottingham 1971, p. 21Google Scholar
  45. 45.
    Bernoulli, D., Blower, S.: An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it. Rev. Med. Virol. 14, 275–288 (2004)CrossRefGoogle Scholar
  46. 46.
    Berry, R.S., Rice, S.A., Ross, J.: Physical Chemistry, 2nd edn. Oxford University Press, New York (2000)Google Scholar
  47. 47.
    Berry, R.S., Rice, S.A., Ross, J.: Physical and Chemical Kinetics, 2nd edn. Oxford University Press, New York (2002)Google Scholar
  48. 48.
    Biebricher, C.K., Eigen, M., William C. Gardiner, J.: Kinetics of RNA replication. Biochemistry 22, 2544–2559 (1983)Google Scholar
  49. 49.
    Bienaymé, I.J.: Da la loi de Multiplication et de la durée des familles. Soc. Philomath. Paris Extraits Ser. 5, 37–39 (1845)Google Scholar
  50. 50.
    Billingsley, P.: Probability and Measure, 3rd edn. Wiley-Interscience, New York (1995)zbMATHGoogle Scholar
  51. 51.
    Billingsley, P.: Probability and Measure, Anniversary edn. Wiley-Interscience, Hoboken (2012)Google Scholar
  52. 52.
    Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscopy. Phys. Rev. Lett. 56, 930–933 (1986)ADSCrossRefGoogle Scholar
  53. 53.
    Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. sci. USA 17, 656–660 (1931)ADSzbMATHCrossRefGoogle Scholar
  54. 54.
    Björck, Å.: Numerical Methods for Least Square Problems. Other Titles in Applied Mathematics. SIAM Society for Industrial & Applied Mathematics, Philadelphia (1996)zbMATHCrossRefGoogle Scholar
  55. 55.
    Bloomfield, V.A., Benbasat, J.A.: Inelastic light-scattering study of macromolecular reaction kinetics. I: The reactions A\(\rightleftharpoons\) B and 2A\(\rightleftharpoons\) A2. Macromolecules 4, 609–613 (1971)ADSCrossRefGoogle Scholar
  56. 56.
    Blythe, R.A., McKane, A.J.: Stochastic models of evolution in genetics, ecology and linguistics. J. Stat. Mech. Theor. Exp. (2007). P07018Google Scholar
  57. 57.
    Boas, M.L.: Mathematical Methods in the Physical Sciences, 3rd edn. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  58. 58.
    Boole, G.: An Investigation of the Laws of Thought on which Are Founded the Mathematical Theories of Logic and Probabilities. MacMillan, London (1854). Reprinted by Dover Publ. Co., New York, 1958Google Scholar
  59. 59.
    Born, M., Oppenheimer, R.: Zur Quantentheorie der Moleküle. Annalen der Physik 84, 457–484 (1927). In GermanADSzbMATHCrossRefGoogle Scholar
  60. 60.
    Börsch, A., Simon, P. (eds.): Carl Friedrich Gauß: Abhandlungen zur Methode der kleinsten Quadrate. P. Stankiewicz, Berlin (1887). In GermanGoogle Scholar
  61. 61.
    Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered madia: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)zbMATHCrossRefGoogle Scholar
  63. 63.
    Brenner, S.: Theoretical biology in the third millenium. Philos. Trans. R. Soc. Lond. B 354, 1963–1965 (1999)CrossRefGoogle Scholar
  64. 64.
    Brenner, S.: Hunters and gatherers. Scientist 16 (4), 14 (2002)Google Scholar
  65. 65.
    Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)CrossRefGoogle Scholar
  66. 66.
    Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, New York (1996)zbMATHCrossRefGoogle Scholar
  68. 68.
    Brockwell, P.J., Davis, R.A., Yang, Y.: Continuous-time Gaussian autoregression. Stat. Sin. 17, 63–80 (2007)zbMATHGoogle Scholar
  69. 69.
    Brown, R.: A brief description of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants, and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag. Ser. 2 4, 161–173 (1828). First Publication: The Edinburgh New Philosophical Journal. July-September 1828, pp. 358–371Google Scholar
  70. 70.
    Calaprice, A. (ed.): The Ultimate Quotable Einstein. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  71. 71.
    Cann, R.L.: Y weigh in again on modern humans. Science 341, 465–467 (2013)ADSCrossRefGoogle Scholar
  72. 72.
    Cann, R.L., Stoneking, M., Wilson, A.C.: Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987)ADSCrossRefGoogle Scholar
  73. 73.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044,109 (2004)Google Scholar
  74. 74.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. J. Chem. Phys. 123, e054,104 (2005)Google Scholar
  75. 75.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, e044,109 (2006)Google Scholar
  76. 76.
    Cao, Y., Gillespie, D.T., Petzold, L.R.: Adaptive explicit-implicit tau-leaping method with automatic tau selection. J. Chem. Phys. 126, e224,101 (2007)CrossRefGoogle Scholar
  77. 77.
    Carter, M., van Brunt, B.: The Lebesgue-Stieltjes Integral. A Practical Introduction. Springer, Berlin (2007)zbMATHGoogle Scholar
  78. 78.
    Cassandras, C.G., Lygeros, J. (eds.): Stochastic Hybrid Systems. Control of Engineering Series. CRC Press, Taylor & Francis Group, Boca Raton (2007)zbMATHGoogle Scholar
  79. 79.
    Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Exprimental evidence of a sustained standing Turing-type nonequilibrium xhemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990)ADSCrossRefGoogle Scholar
  80. 80.
    Chang, C., Gzyl, H.: Parameter estimation in superposition of decaying exponentials. Appl. Math. Comput. 96, 101–116 (1998)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Chechkin, A.V., Metzler, R., Klafter, J., Gonchar, V.Y.: Introduction to the theory of Lévy flights. In: R. Klages, G. Radons, I.M. Sokolov (eds.) Anomalous Transport: Foundations and Applications, chap. 5, pp. 129–162. Wiley-VCH Verlag GmbH, Weinheim, DE (2008)CrossRefGoogle Scholar
  82. 82.
    Child, M.S.: Molecular Collision Theory. Dover Publications, Mineola (1996). Originally publisher: Academic Press, London (1974)Google Scholar
  83. 83.
    Chung, K.L.: A Course in Probability Theory, Probability and Mathematical Statistics, vol. 21, 2nd edn. Academic Press, New York (1974)Google Scholar
  84. 84.
    Chung, K.L.: Elementary Probability Theory with Stochastic Processes, 3rd edn. Springer, New York (1979)zbMATHCrossRefGoogle Scholar
  85. 85.
    Cochran, W.G.: The distribution of quadratic forms in normal systems, with applications to the analysis of covariance. Math. Proc. Camb. Philos. Soc. 30, 178–191 (1934)ADSzbMATHCrossRefGoogle Scholar
  86. 86.
    Conrad, K.: Probability distributions and maximum entropy. Expository paper, University of Connecticut, Storrs, CT (2005)Google Scholar
  87. 87.
    Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E. (eds.) Algorithimc Bioprocesses, Natural Computing Series, vol. XX, pp. 543–584. Springer, Berlin (2009)Google Scholar
  88. 88.
    Cooper, B.E.: Statistics for Experimentalists. Pergamon Press, Oxford (1969)Google Scholar
  89. 89.
    Cortina Borja, M., Haigh, J.: The birthday problem. Significance 4, 124–127 (2007)MathSciNetCrossRefGoogle Scholar
  90. 90.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  91. 91.
    Cox, D.R., Miller, H.D.: The Theory of Stochastic Processes. Methuen, London (1965)zbMATHGoogle Scholar
  92. 92.
    Cox, R.T.: The Algebra of Probable Inference. The John Hopkins Press, Baltimore (1961)zbMATHGoogle Scholar
  93. 93.
    Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103, 8697–8702 (2006)ADSzbMATHCrossRefGoogle Scholar
  94. 94.
    Cramér, H.: Mathematical Methods of Statistics. Princeton Univ. Press, Priceton (1946)zbMATHGoogle Scholar
  95. 95.
    Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1956)zbMATHGoogle Scholar
  96. 96.
    Crow, J.F., Kimura, M.: An Introduction to Population Genetics Theory. Sinauer Associates, Sunderland (1970). Reprinted at The Blackburn Press, Caldwell (2009)Google Scholar
  97. 97.
    Cull, P., Flahive, M., Robson, R.: Difference Equations. From Rabbits to Chaos. Undergraduate Texts in Mathematics. Springer, New York (2005)zbMATHGoogle Scholar
  98. 98.
    Dalla Valle, J.M.: Note on the Heaviside expansion formula. Proc. Natl. Acad. Sci. USA 17, 678–684 (1931)ADSzbMATHCrossRefGoogle Scholar
  99. 99.
    Darvey, I.G., Ninham, B.W.: Stochastic models for second-order chemical reaction kinetics. Time course of reactions. J. Chem. Phys. 46, 1626–1645 (1967)Google Scholar
  100. 100.
    Darvey, I.G., Ninham, B.W., Staff, P.J.: Stochastic models for second-order chemical reaction kinetics. The equilibirum state. J. Chem. Phys. 45, 2145–2155 (1966)ADSCrossRefGoogle Scholar
  101. 101.
    Darvey, I.G., Staff, P.J.: Stochastic approach to first-order chemical reaction kinetics. J. Chem. Phys. 44, 990–997 (1966)ADSMathSciNetCrossRefGoogle Scholar
  102. 102.
    De Candolle, A.: Zur Geschichte der Wissenschaften und Gelehrten seit zwei Jahrhunderten nebst anderen Studien über wissenschaftliche Gegenstände insbesondere über Vererbung und Selektion beim Menschen. Akademische Verlagsgesellschaft, Leipzig, DE (1921). Deutsche Übersetzung der Originalausgabe “Histoire des sciences et des savants depuis deux siècle”, Geneve 1873, durch Wilhelm Ostwald.Google Scholar
  103. 103.
    DeKepper, P., Epstein, I.R., Kustin, K.: Bistability in the oxidatiion of arsenite by iodate in a stirred flow reactor. J. Am. Chem. Soc. 103, 6121–6127 (1981)CrossRefGoogle Scholar
  104. 104.
    Delbrück, M.: Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120–124 (1940)ADSCrossRefGoogle Scholar
  105. 105.
    Demetrius, L., Schuster, P., Sigmund, K.: Polynucleotide evolution and branching processes. Bull. Math. Biol. 47, 239–262 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Devroye, L.: Non-Uniform Random Variate Generation. Springer, New York (1986)zbMATHCrossRefGoogle Scholar
  107. 107.
    Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley Series in Mathematical and Computational Biology. Princeton University Press, Hoboken (2000)zbMATHGoogle Scholar
  108. 108.
    Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton Series in Theoretical and Computational Biology. Princeton University Press, Princeton (2012)zbMATHCrossRefGoogle Scholar
  109. 109.
    Dietz, K.: Epidemics and rumors: A survey. J. R. Stat. Soc. A 130, 505–528 (1967)MathSciNetCrossRefGoogle Scholar
  110. 110.
    Dietz, K., Heesterbeeck, J.A.P.: Daniel Bernoulli’s epidemiological model revisited. Math. Biosci. 180, 1–21 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Djermoune, E.H., Tomczak, M.: Statistical analysis of the Kumaresan-Tufts and matrix pencil methods in estimating damped sinusoids. In: Hlawatsch, F., Matz, G., Rupp, M., Wistawel, B. (eds.) Proceedings of the XII. European Signal Processing Conference, vol. II, pp. 1261–1264. Technische Universität Wien, Wien (2004)Google Scholar
  112. 112.
    Domingo, E., Parrish, C.R., John J, H. (eds.): Origin and Evolution of Viruses, 2nd edn. Elsevier, Academic Press, Amsterdam, NL (2008)Google Scholar
  113. 113.
    Domingo, E., Schuster, P. (eds.): Quasispecies: From Theory to Experimental Systems, Current Topics in Microbiology and Immunology, vol. 392. Springer, Berlin (2016)Google Scholar
  114. 114.
    Donnelly, P.J., Tavaré, S.: Coalescents and genealogical structure under neutrality. Annu. Rev. Genet. 29, 401–421 (1995)CrossRefGoogle Scholar
  115. 115.
    Doob, J.L.: Topics in the theory of Markoff chains. Trans. Am. Math. Soc. 52, 37–64 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Doob, J.L.: Markoff chains – Denumerable case. Trans. Am. Math. Soc. 58, 455–473 (1945)MathSciNetzbMATHGoogle Scholar
  117. 117.
    Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks, Pacific Grove (1989)zbMATHGoogle Scholar
  118. 118.
    Dushman, S.: The reaction between iodic and hydroiodic acid. J. Phys. Chem. 8, 453–482 (1903)CrossRefGoogle Scholar
  119. 119.
    Dyson, F.: A meeting with Enrico Fermi. How one intuitive physicist rescued a team from fruitless research. Nature 427, 297 (2004)Google Scholar
  120. 120.
    Eddy, S.R.: What is Bayesian statistics? Nat. Biotechnol. 22, 1177–1178 (2004)CrossRefGoogle Scholar
  121. 121.
    Edelson, D., Field, R.J., Noyes, R.M.: Mechanistic details of the Belousov-Zhabotinskii oscillations. Int. J. Chem. Kinet. 7, 417–423 (1975)CrossRefGoogle Scholar
  122. 122.
    Edgeworth, F.Y.: On the probable errors of frequence-constants. J. R. Stat. Soc. 71, 381–397 (1908)CrossRefGoogle Scholar
  123. 123.
    Edgeworth, F.Y.: On the probable errors of frequence-constants (contd.). J. R. Stat. Soc. 71, 499–512 (1908)Google Scholar
  124. 124.
    Edgeworth, F.Y.: On the probable errors of frequence-constants (contd.). J. R. Stat. Soc. 71, 651–678 (1908)Google Scholar
  125. 125.
    Edman, L., Földes-Papp, Z., Wennmalm, S., Rigler, R.: The fluctuating enzyme: A single moleculae approach. Chem. Phys. 247, 11–22 (1999)ADSCrossRefGoogle Scholar
  126. 126.
    Edman, L., Rigler, R.: Memory landscapes of single-enzyme molecules. Proc. Natl. Acad. Sci. USA 97, 8266–8271 (2000)ADSCrossRefGoogle Scholar
  127. 127.
    Edwards, A.W.F.: Are Mendel’s resulta really too close. Biol. Rev. 61, 295–312 (1986)CrossRefGoogle Scholar
  128. 128.
    Ehrenberg, M., Rigler, R.: Rotational Brownian motion and fluorescence intensity fluctuations. Chem. Phys. 4, 390–401 (1974)ADSCrossRefGoogle Scholar
  129. 129.
    Ehrenfest, P., Ehrenfest, T.: Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem. Z. Phys. 8, 311–314 (1907)zbMATHGoogle Scholar
  130. 130.
    Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971)ADSCrossRefGoogle Scholar
  131. 131.
    Eigen, M., McCaskill, J., Schuster, P.: The molecular quasispecies. Adv. Chem. Phys. 75, 149–263 (1989)Google Scholar
  132. 132.
    Eigen, M., Schuster, P.: The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977)ADSGoogle Scholar
  133. 133.
    Einstein, A.: Über die von der molekular-kinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annal. Phys. (Leipzig) 17, 549–560 (1905)Google Scholar
  134. 134.
    Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover Publications, New York (1956). Five original publications by Albert Einstein edited with notes by R. FürthGoogle Scholar
  135. 135.
    Elliot, R.J., Anderson, B.D.O.: Reverse-time diffusions. Stoch. Process. Appl. 19, 327–339 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  136. 136.
    Elliot, R.J., Kopp, A.E.: Mathematics of Financial Markets, 2nd edn. Springer, New York (2005)zbMATHGoogle Scholar
  137. 137.
    Elson, E., Magde, D.: Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13, 1–27 (1974)Google Scholar
  138. 138.
    Engl, H.W., Flamm, C., Kügler, P., Lu, J., Müller, S., Schuster, P.: Inverse problems in systems biology. Inverse Prob. 25, 123,014 (2009)Google Scholar
  139. 139.
    Engl, H.W., Hanke, M., Neubauuer, A.: Regularization of Inverse Problems. Kluwer Academic, Boston (1996)CrossRefGoogle Scholar
  140. 140.
    Érdi, P., Lente, G.: Stochastic Chemical Kinetics. Theory and (Mostly) Systems Biological Applications. Understanding Complex Systems. Springer, Berlin (2014)Google Scholar
  141. 141.
    Erlich, H.A. (ed.): PCR Technology. Principles and Applications for DNA Amplification. Stockton Press, New York (1989)Google Scholar
  142. 142.
    Evans, M., Hastings, N.A.J., Peacock, J.B.: Statistical Distributions, 3rd edn. Wiley, New York (2000)zbMATHGoogle Scholar
  143. 143.
    Everett, C.J., Ulam, S.: Multiplicative systems I. Proc. Natl. Acad. Sci. USA 34, 403–405 (1948)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Everett, C.J., Ulam, S.M.: Multiplicative systems in several variables I. Tech. Rep. LA-683, Los Alamos Scientific Laboratory (1948)Google Scholar
  145. 145.
    Everett, C.J., Ulam, S.M.: Multiplicative systems in several variables II. Tech. Rep. LA-690, Los Alamos Scientific Laboratory (1948)Google Scholar
  146. 146.
    Everett, C.J., Ulam, S.M.: Multiplicative systems in several variables III. Tech. Rep. LA-707, Los Alamos Scientific Laboratory (1948)Google Scholar
  147. 147.
    Ewens, W.J.: Mathematical Population Genetics. I. Theoretical Introduction, 2nd edn. Interdisciplinary Applied Mathematics. Springer, Berlin (2004)Google Scholar
  148. 148.
    Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)ADSCrossRefGoogle Scholar
  149. 149.
    Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, New York (1982)zbMATHGoogle Scholar
  150. 150.
    Feigenbaum, M.J.: Universal behavior in nonlinear systems. Physica D 7, 16–39 (1983)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  151. 151.
    Feinberg, M.: Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49, 187–194 (1972)MathSciNetCrossRefGoogle Scholar
  152. 152.
    Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L., Amundson, N.R. (eds.) Chemical Reactor Theory – A Review, pp. 1–78. Prentice Hall, Englewood Cliffs (1977)Google Scholar
  153. 153.
    Feinberg, M.: Lectures on Chemical Reaction Networks. Chemical Engineering & Mathematics. The Ohio State University, Columbus (1979)Google Scholar
  154. 154.
    Feinberg, M.: Chemical oscillations, multiple equilibria, and reaction network structure. In: Stewart, W.E., Ray, W.H., Conley, C.C. (eds.) Dynamics and Modelling of Reactive Systems, pp. 59–130. Academic Press, New York (1980)CrossRefGoogle Scholar
  155. 155.
    Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors – II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci. 43, 1–25 (1988)Google Scholar
  156. 156.
    Feller, W.: On the integro-differential equations of purely discontinuous Markoff processes. Trans. Am. Math. Soc. 48, 488–515 (1940)MathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    Feller, W.: The general form of the so-called law of the iterated logarithm. Trans. Am. Math. Soc. 54, 373–402 (1943)MathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    Feller, W.: On the theory of stochastic processes, with particular reference to applications. In: The Regents of the University of California (ed.) Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, pp. 403–432. University of California Press, Berkeley (1949)Google Scholar
  159. 159.
    Feller, W.: Diffusion processes in genetics. In: Neyman, J. (ed.) Proc. 2nd Berkeley Symp. on Mathematical Statistics and Probability. University of Caifornia Press, Berkeley (1951)Google Scholar
  160. 160.
    Feller, W.: An Introduction to Probability Theory and Its Application, vol. I, 3rd edn. Wiley, New York (1968)Google Scholar
  161. 161.
    Feller, W.: An Introduction to Probability Theory and Its Application, vol. II, 2nd edn. Wiley, New York (1971)Google Scholar
  162. 162.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)Google Scholar
  163. 163.
    Fernández-Ramos, A., Miller, J.A., Klippenstein, S.J., Truhlar, D.G.: Modeling the kinetics of bimolecular reactions. Chem. Rev. 106, 4518–4584 (2006)CrossRefGoogle Scholar
  164. 164.
    Fersht, A.: Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W. H. Fremman and Company, New York (1999)Google Scholar
  165. 165.
    Fick, A.: Über diffusion. Annalen der Physik und Chemie 170 (4. Reihe 94), 59–86 (1855)Google Scholar
  166. 166.
    Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. II. Thorough analysis of temporal oscillations in the bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94, 8649–8664 (1972)Google Scholar
  167. 167.
    Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)Google Scholar
  168. 168.
    Firth, C.J.M., Bray, D.: Stochastic simulation of cell signalling pathways. In: Bower, J.M., Bolouri, H. (eds.) Computational Modeling of Genetic and Biochemical Networks, pp. 263–286. MIT Press, Cambridge (2000)Google Scholar
  169. 169.
    Fisher, R.A.: On an absolute criterion for fitting frequency curves. Messeng. Math. 41, 155–160 (1912)Google Scholar
  170. 170.
    Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222, 309–368 (1922)ADSzbMATHCrossRefGoogle Scholar
  171. 171.
    Fisher, R.A.: Applications of “Student’s” distribution. Metron 5, 90–104 (1925)zbMATHGoogle Scholar
  172. 172.
    Fisher, R.A.: Theory of statistical estimation. Proc. Camb. Philos. Soc. 22, 700–725 (1925)ADSzbMATHCrossRefGoogle Scholar
  173. 173.
    Fisher, R.A.: Moments and product moments of sampling distributions. Proc. Lond. Math. Soc. Ser.2, 30, 199–238 (1928)Google Scholar
  174. 174.
    Fisher, R.A.: The Genetical Theory of Natural Selection. Oxford University Press, Oxford (1930)zbMATHCrossRefGoogle Scholar
  175. 175.
    Fisher, R.A.: The logic of inductive inference. J. R. Stat. Soc. 98, 39–54 (1935)zbMATHCrossRefGoogle Scholar
  176. 176.
    Fisher, R.A.: Has Mendel’s work been rediscovered? Ann. Sci., 115–137 (1936)Google Scholar
  177. 177.
    Fisher, R.A.: The Design of Experiments, 8th edn. Hafner Publishing Company, Edinburgh (1966)Google Scholar
  178. 178.
    Fisk, D.L.: Quasi-martingales. Trans. Am. Math. Soc. 120, 369–389 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    Fisz, M.: Probability Theory and Mathematical Statistics, 3rd edn. Wiley, New York (1963)zbMATHGoogle Scholar
  180. 180.
    Fisz, M.: Wahrscheinlichkeitsrechnung und mathematische Statistik. VEB Deutscher Verlag der Wissenschaft, Berlin (1989). In GermanzbMATHGoogle Scholar
  181. 181.
    Fletcher, R.I.: The quadratic law of damped exponential growth. Biometrics 20, 111–124 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Fofack, H., Nolan, J.P.: Tail behavior, modes and other characteristics of stable distributions. Extremes 2, 39–58 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  183. 183.
    Föllner, H.H., Geiseler, W.: A model of bistability in an open homogeneous chemical reaction system. Naturwissenschaften 64, 384 (1977)ADSCrossRefGoogle Scholar
  184. 184.
    Foster, D.P.: Law of the iterated logarithm. Wikipedia entry, University of Pennsylvania, Philadelphia, PA (2009). Retrieved April 07, 2009 from en.wikipedia.org/wiki/Law_of_the_iterated_logarithm Google Scholar
  185. 185.
    Francalacci, P., Morelli, L., Angius, A., Berutti, R., Reinier, F., Atzeni, R., Pilu, R., Busonero, F., Maschino, A., Zara, I., Sanna, D., Useli, A., Urru, M.F., Marcelli, M., Cusano, R., Oppo, M., Zoledziewska, M., Pitzalis, M., Deidda, F., Porcu, E., Poddie, F., Kang, H.M., Lyons, R., Tarrier, B., Gresham, J.B., Li, B., Tofanelli, S., Alonso, S., Dei, M., Lai, S., Mulas, A., Whalen, M.B., Uzzau, S., Jones, C., Schlessinger, D., Abecasis, G.R., Sanna, S., Sidore, C., Cucca, F.: Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chrmosome phylogeny. Science 341, 565–569 (2013)Google Scholar
  186. 186.
    Franklin, A., Edwards, A.W.F., Fairbanks, D.J., Hartl, D.L., Seidenfeld, T.: Ending the Mendel-Fisher Controversy. University of Pittburgh Press, Pittsburgh (2008)Google Scholar
  187. 187.
    Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The eenergy landscape and motions of proteins. Science 254, 1598–1603 (1991)ADSCrossRefGoogle Scholar
  188. 188.
    Freire, J.G., Field, R.J., Gallas, J.A.C.: Relative abundance and structure of chaotic behavior: The nonpolynomial belousov-zhabotinsky reaction kinetics. J. Chem. Phys. 131, e044,105 (2009)CrossRefGoogle Scholar
  189. 189.
    Fubini, G.: Sugli integrali multipli. Rom. Acc. L. Rend. V 16, 608–614 (1907). Reprinted in Fubini, G. Opere scelte 2, Cremonese pp. 243–249, 1958Google Scholar
  190. 190.
    Gadgil, C., Lee, C.H., Othmer, H.G.: A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  191. 191.
    Galton, F.: The geometric mean in vital and social statistics. Proc. Roy. Soc. Lond. 29, 365–367 (1879)CrossRefGoogle Scholar
  192. 192.
    Galton, F.: Natural Inheritance, second american edn. Macmillan, London (1889). App. F, pp. 241–248Google Scholar
  193. 193.
    Gardiner, C.W.: Handbook of Stochastic Methods, 1st edn. Springer, Berlin (1983)zbMATHCrossRefGoogle Scholar
  194. 194.
    Gardiner, C.W.: Stochastic Methods. A Handbook for the Natural Sciences and Social Sciences, fourth edn. Springer Series in Synergetics. Springer, Berlin (2009)Google Scholar
  195. 195.
    Gause, G.F.: Experimental studies on the struggle for existence. J. Exp. Biol. 9, 389–402 (1932)Google Scholar
  196. 196.
    Gause, G.F.: The Struggle for Existence. Willans & Wilkins, Baltimore (1934). Also published by Hafner, New York (1964) and Dover, Mineola (1971 and 2003)Google Scholar
  197. 197.
    Gauß, C.F.: Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Perthes et Besser, Hamburg (1809). English translation: Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections. Little, Brown. Boston, MA. 1857. Reprinted by Dover, New York (1963)Google Scholar
  198. 198.
    Geisler, W., Föllner, H.H.: Three steady state situation in an open chemical reaction system. I. Biophys. Chem. 6, 107–115 (1977)CrossRefGoogle Scholar
  199. 199.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Baysian Data Analysis, 2nd edn. Texts in Statistical Science. Chapman & Hall / CRC, Boca Raton (2004)Google Scholar
  200. 200.
    George, G.: Testing for the independence of three events. Math. Gaz. 88, 568 (2004)CrossRefGoogle Scholar
  201. 201.
    Georgii, H.: Stochastik. Einführung in die Wahrscheinlichkeitstheorie und Statistik, 3rd edn. Walter de Gruyter GmbH & Co., Berlin (2007). In German. English translation: Stochastics. Introduction to Probability and Statistics. Walter de Gruyter GmbH & Co. Berlin (2008).Google Scholar
  202. 202.
    Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Charles Scribner’s Sons, New York (1902). Reprinted 1981 by Ox Bow Press, Woodbridge, CTGoogle Scholar
  203. 203.
    Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol.I, Thermodynamics. Dover Publications, New York (1961)Google Scholar
  204. 204.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000)CrossRefGoogle Scholar
  205. 205.
    Gihman, I.F., Skorohod, A.V.: The Theory of Stochastic Processes. Vol. I, II, and III. Springer, Berlin (1975)Google Scholar
  206. 206.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)ADSMathSciNetCrossRefGoogle Scholar
  207. 207.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  208. 208.
    Gillespie, D.T.: Markov Processes: An Introduction for Physical Scientists. Academic Press, San Diego (1992)zbMATHGoogle Scholar
  209. 209.
    Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)ADSCrossRefGoogle Scholar
  210. 210.
    Gillespie, D.T.: Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys. Rev. E 54, 2084–2091 (1996)ADSMathSciNetCrossRefGoogle Scholar
  211. 211.
    Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000)ADSCrossRefGoogle Scholar
  212. 212.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115 (4), 1716–1733 (2001)ADSCrossRefGoogle Scholar
  213. 213.
    Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 58, 35–55 (2007)ADSCrossRefGoogle Scholar
  214. 214.
    Gillespie, D.T., Seitaridou, E.: Simple Brownian Diffusion. An Introduction to the Standard Theoretical Models. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  215. 215.
    Gillies, D.: Varieties of propensity. Br. J. Philos. Sci. 51, 807–853 (2000)MathSciNetCrossRefGoogle Scholar
  216. 216.
    Goel, N.S., Richter-Dyn, N.: Stochastic Models in Biology. Academic Press, New York (1974)Google Scholar
  217. 217.
    Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)ADSMathSciNetCrossRefGoogle Scholar
  218. 218.
    Goychuk, I.: Viscoelastic subdiffusion: Generalized langevin equation approach. Adv. Chem. Phys. 150, 187–253 (2012)Google Scholar
  219. 219.
    Gradstein, I.S., Ryshik, I.M.: Tables of Series, Products, and Integrals, vol. 1. Verlag Harri Deutsch, Thun, DE (1981). In German and English. Translated from Russian by Ludwig Boll, BerlinGoogle Scholar
  220. 220.
    Gray, R.M.: Entropy and Information Theory, 2nd edn. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  221. 221.
    Griffiths, A.J.F., Wessler, S.R., Caroll, J.B., Doebley, J.: An Introduction to Genetic Analysis, 10th edn. W. H. Freeman, New York (2012)Google Scholar
  222. 222.
    Grimmett, G., Stirzaker, D.: Probability and Random Processes, 3rd edn. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
  223. 223.
    Grünbaum, B.: Venn diagrams and independent falilies of sets. Math. Mag. 48, 12–23 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  224. 224.
    Grünbaum, B.: The construction of Venn diagrams. Coll. Math. J. 15, 238–247 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  225. 225.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42. Springer, New York (1983)Google Scholar
  226. 226.
    Gunawardena, J.: Chemical reaction network theory for in-silico biologists. Tech. rep., Bauer Center for Genomics Research at Harvard University, Cambridge, MA (2003)Google Scholar
  227. 227.
    Györgyi, L., Field, R.J.: A three-variable model of deterministic chaos in the belousov-zhabotinsky reaction. Nature 355, 808–810 (1992)ADSCrossRefGoogle Scholar
  228. 228.
    Hájek, A.: Interpretations of probability. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2012 edn. The Metaphysics Research Lab, Center for the Study of Language and Information, Stanford University, Stanford Universiy, Stanford, CA. World Wide Web URL: http://plato.stanford.edu/entries/probability-interpret/ (2013). Retrieved January 23, 2013
  229. 229.
    Hajek, B.: An exploration of random processes for engineers. Lecture Notes ECE 534, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL (2014). Retrieved March 16, 2014 from www.ifp.illinois.edu/~hajek/Papers/randomprocesses.html
  230. 230.
    Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J.: Improved patch-clamp techniques for high-resolution current recording from cels and cell-free mambrane patches. Pflügers Archiv. Eur. J. Physiol. 391, 85–100 (1981)CrossRefGoogle Scholar
  231. 231.
    Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  232. 232.
    Hamilton, W.R.: On a general method in dynamics. Philos. Trans. R. Soc. Lond. II for 1834, 247–308 (1834)Google Scholar
  233. 233.
    Hamilton, W.R.: Second essay on a general method in dynamics. Philos. Trans. R. Soc. London I for 1835, 95–144 (1835)Google Scholar
  234. 234.
    Hammer, M.F.: A recent common ancestry for human Y chromosomes. Nature 378, 376–378 (1995)ADSCrossRefGoogle Scholar
  235. 235.
    Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147–160 (1950)MathSciNetCrossRefGoogle Scholar
  236. 236.
    Hamming, R.W.: Coding and Information Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (1986)zbMATHGoogle Scholar
  237. 237.
    Hanna, A., Saul, A., Showalter, K.: Detailed studies of propagating frints in the iodate oxidation of arsenous acid. J. Am. Chem. Soc. 104, 3838–3844 (1982)CrossRefGoogle Scholar
  238. 238.
    Hansma, H.G., Kasuya, K., Oroudjev, E.: Atomic force microscopy imaging and pulling of nucleic acids. Curr. Op. Struct. Biol. 14, 380–385 (2004)CrossRefGoogle Scholar
  239. 239.
    Harris, T.E.: Branching Processes. Springer, Berlin (1963)zbMATHCrossRefGoogle Scholar
  240. 240.
    Harris, T.E.: The Theory of Branching Processes. Dover Publications, New York (1989)Google Scholar
  241. 241.
    Hartl, D.L., Clark, A.G.: Principles of Population Genetics, 3rd edn. Sinauer Associates, Sunderland (1997)Google Scholar
  242. 242.
    Hartman, P., Wintner, A.: On the law of the iterated logarithm. Am. J. Math. 63, 169–173 (1941)MathSciNetzbMATHCrossRefGoogle Scholar
  243. 243.
    Hatzakis, N.S., Wei, L., Jorgensen, S.K., Kunding, A.H., Bolinger, P.Y., Ehrlich, N., Makarov, I., Skjot, M., Svendsen, A., Hedegård, P., Stamou, D.: Single enzyme studies reveal the existence of discrete states for monomeric enzymes and how they are ”selected” upon allosteric regulation. J. Am. Chem. Soc. 134, 9296–9302 (2012)CrossRefGoogle Scholar
  244. 244.
    Haubold, H.J., Mathai, M.A., Saxena, R.K.: Mittag-Leffler functions and their applications. J. Appl. Math. 2011, e298,628 (2011). Hindawi Publ. Corp.Google Scholar
  245. 245.
    Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14, 1188–1205 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  246. 246.
    Hawkins, D., Ulam, S.: Theory of multiplicative processes I. Tech. Rep. LADC-265, Los Alamos Scientific Laboratory (1944)Google Scholar
  247. 247.
    Hazeltine, E.L., Rawlings, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 6959–6969 (2002)ADSCrossRefGoogle Scholar
  248. 248.
    Heathcote, C.R., Moyal, J.E.: The random walk (in continuous time) and its application to the theory of queues. Biometrika 46, 400–411 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  249. 249.
    Heinrich, R., Sonntag, I.: Analysis of the selection equation for a multivariable population model. Deterministic anad stochastic solutios and discussion of the approach for populations of self-reproducing biochemical networks. J. Theor. Biol. 93, 325–361 (1981)MathSciNetGoogle Scholar
  250. 250.
    Heyde, C.C., Seneta, E.: Studies in the history of probability and statistics. xxxi. the simple branching porcess, a turning point test and a fundmanetal inequality: A historical note on I. J. Bienaymé. Biometrika 59, 680–683 (1972)MathSciNetzbMATHGoogle Scholar
  251. 251.
    Higham, D.J.: Modeling and somulationg chemical reactions. SIAM Rev. 50, 347–368 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  252. 252.
    Hinshelwood, C.N.: On the theory of unimolecular reactions. Proc. R. Soc. Lond. A 113, 230–233 (1926)ADSCrossRefGoogle Scholar
  253. 253.
    Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2nd edn. Elsevier, Amsterdam (2004)zbMATHGoogle Scholar
  254. 254.
    Hirschfeld, T.: Optical microscopic observation of small molecules. Appl. Opt. 15, 2965–2966 (1976)ADSCrossRefGoogle Scholar
  255. 255.
    Hocking, R.L., Schwertman, N.C.: An extension of the birthday problem to exactly k matches. Coll. Math. J. 17, 315–321 (1986)CrossRefGoogle Scholar
  256. 256.
    Hofbauer, J., Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems und constant organization II: Homogenoeous growth functions of degree p = 2. SIAM J. Appl. Math. 38, 282–304 (1980)Google Scholar
  257. 257.
    Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Statistics, 7th edn. Pearson Education, Upper Saddle River (2012)Google Scholar
  258. 258.
    Hogg, R.V., Tanis, E.A.: Probability and Statistical Inference, 8th edn. Pearson – Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
  259. 259.
    Holder, M., Lewis, P.O.: Phylogeny estimation: Traditional and Bayesian approaches. Nat. Rev. Genet. 4, 275–284 (2003)CrossRefGoogle Scholar
  260. 260.
    Holdren, J.P., Lander, E., Varmus, H.: Designing a Digital Future: Federally Funded Research and Development in Networking and Information Technology. President’s Council of Advisors on Science and Technology, Washington, DC (2010)Google Scholar
  261. 261.
    Holsinger, K.E.: Lecture Notes in Population Genetics. University of Connecticut, Dept. of Ecology and Evolutionary Biology, Storrs, CT (2012). Licensed under the Creative Commons Attribution-ShareAlike License: http://creativecommons.org/licenses/by-sa/3.0/
  262. 262.
    Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal. 49, 172–186 (1972)MathSciNetCrossRefGoogle Scholar
  263. 263.
    Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)MathSciNetCrossRefGoogle Scholar
  264. 264.
    Houchmandzadeh, B., Vallade, M.: An alternative to the diffusion equation in population genetics. Phys. Rev. E 83, e051,913 (2010)Google Scholar
  265. 265.
    Houston, P.L.: Chemical Kinetics and Reaction Dynamics. The McGraw-Hill Companies, New York (2001)Google Scholar
  266. 266.
    Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N., Krogh, B. (eds.) Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 1790, pp. 160–173. Springer, Berlin (2000)CrossRefGoogle Scholar
  267. 267.
    Hu, Y., Li, T.: Highly accurate tau-leaping methiods with random corrections. J. Chem. Phys. 130, e124,109 (2009)CrossRefGoogle Scholar
  268. 268.
    Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 38, 814–824 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  269. 269.
    Humphries, N.E., Queiroz, N., Dyer, J.R.M., Pade, N.G., Musyl, M.K., Schaefer, K.M., Fuller, D.W., Brunnschweiler, J.M., Doyle, T.K., Houghton, J.D.R., Hays, G.C., Jones, C.S., Noble, L.R., Wearmouth, V.J., Southall, E.J., Sims, D.W.: Environmental context explains Lévy and Brwonian movement patterns of marine predators. Nature 465, 1066–1069 (2010)ADSCrossRefGoogle Scholar
  270. 270.
    Inagaki, H.: Selection under random mutations in stochastic Eigen model. Bull. Math. Biol. 44, 17–28 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  271. 271.
    Ishida, K.: Stochastic model for bimolecular reaction. J. Chem. Phys. 41, 2472–2478 (1964)ADSCrossRefGoogle Scholar
  272. 272.
    Itō, K.: Stochastic integral. Proc. Imp. Acad. Tokyo 20, 519–524 (1944)MathSciNetzbMATHCrossRefGoogle Scholar
  273. 273.
    Itō, K.: On stochastic differential equations. Mem. Am. Math. Soc. 4, 1–51 (1951)Google Scholar
  274. 274.
    Jachimowski, C.J., McQuarrie, D.A., Russell, M.E.: A stochastic approach to enzyme-substrate reactions. Biochemistry 3, 1732–1736 (1964)CrossRefGoogle Scholar
  275. 275.
    Jackson, E.A.: Perspectives of Nonlinear Dynamics, vol. 1. Cambridge University Press, Cambridge (1989)zbMATHCrossRefGoogle Scholar
  276. 276.
    Jackson, E.A.: Perspectives of Nonlinear Dynamics, vol. 2. Cambridge University Press, Cambridge (1989)zbMATHCrossRefGoogle Scholar
  277. 277.
    Jacobs, K.: Stochastic processes for Physicists. Understanding Noisy Systems. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  278. 278.
    Jahnke, T., Huisinga, W.: Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54, 1–26 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  279. 279.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  280. 280.
    Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  281. 281.
    Jaynes, E.T.: Probability Theory. The Logic of Science. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  282. 282.
    Jensen, A.L.: Comparison of logistic equations for population growth. Biometrics 31, 853–862 (1975)zbMATHCrossRefGoogle Scholar
  283. 283.
    Jensen, L.: Solving a singular diffusion equation occurring in population genetics. J. Appl. Probab. 11, 1–15 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  284. 284.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Probability and Mathematical Statistics. Applied Probability and Statistics, vol. 1, 2nd edn. Wiley, New York (1994)Google Scholar
  285. 285.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, Probability and Mathematical Statistics. Applied Probability and Statistics, vol. 2, 2nd edn. Wiley, New York (1995)Google Scholar
  286. 286.
    Jones, B.L., Enns, R.H., Rangnekar, S.S.: On the theory of selection of coupled macromolecular systems. Bull. Math. Biol. 38, 15–28 (1976)zbMATHCrossRefGoogle Scholar
  287. 287.
    Jones, B.L., Leung, H.K.: Stochastic analysis of a non-linear model for selection of biological macromolecules. Bull. Math. Biol. 43, 665–680 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  288. 288.
    Joyce, G.F.: Forty years of in vitro evolution. Angew. Chem. Internat. Ed. 46, 6420–6436 (2007)CrossRefGoogle Scholar
  289. 289.
    Karlin, S., McGregor, J.: On a genetics model of moran. Math. Proc. Camb. Philos. Soc. 58, 299–311 (1962)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  290. 290.
    Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press, New York (1975)zbMATHGoogle Scholar
  291. 291.
    Kassel, L.S.: Studies in homogeneous gas reactions I. J. Phys. Chem. 32, 225–242 (1928)CrossRefGoogle Scholar
  292. 292.
    Kendall, D.G.: An artificial realization of a simple “birth-and-death” process. J. R. Stat. Soc. B 12, 116–119 (1950)zbMATHGoogle Scholar
  293. 293.
    Kendall, D.G.: Branching processes since 1873. J. Lond. Math. Soc. 41, 386–406 (1966)MathSciNetzbMATHGoogle Scholar
  294. 294.
    Kendall, D.G.: The genalogy of genealogy: Branching processes before (an after) 1873. Bull. Lond. Math. Soc. 7, 225–253 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  295. 295.
    Kenney, J.F., Keeping, E.S.: Mathematics of Statistics, 2nd edn. Van Nostrand, Princeton (1951)zbMATHGoogle Scholar
  296. 296.
    Kenney, J.F., Keeping, E.S.: The k-Statistics. In Mathematics of Statistics. Part I, §7.9, 3rd edn. Van Nostrand, Princeton (1962)Google Scholar
  297. 297.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927)ADSzbMATHCrossRefGoogle Scholar
  298. 298.
    Kesten, H., Stigum, B.P.: A limit theorem for multidimensional Galton-Watson processes. Ann. Math. Stat. 37, 1211–1223 (1966)MathSciNetzbMATHCrossRefGoogle Scholar
  299. 299.
    Keynes, J.M.: A Treatise on Probability. MacMillan, London (1921)zbMATHGoogle Scholar
  300. 300.
    Khinchin, A.Y.: Über einen Satz der Wahrscheinlichkeitsrechnung. Fundam. Math. 6, 9–20 (1924). In GermanGoogle Scholar
  301. 301.
    Kim, S.K.: Mean first passage time for a random walker and its application to chemical knietics. J. Chem. Phys. 28, 1057–1067 (1958)ADSCrossRefGoogle Scholar
  302. 302.
    Kimura, M.: Solution of a process of random genetic drift with a continuous model. Proc. Natl. Acad. Sci. USA 41, 144–150 (1955)ADSzbMATHCrossRefGoogle Scholar
  303. 303.
    Kimura, M.: Diffusion models in population genetics. J. Appl. Probab. 1, 177–232 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  304. 304.
    Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar
  305. 305.
    Kingman, J.F.C.: Mathematics of Genetic Diversity. Society for Industrial and Applied Mathematics, Washigton, DC (1980)zbMATHCrossRefGoogle Scholar
  306. 306.
    Kingman, J.F.C.: The genealogy of large populations. J. Appl. Probab. 19 (Essays in Statistical Science), 27–43 (1982)Google Scholar
  307. 307.
    Kingman, J.F.C.: Origins of the coalescent: 1974 – 1982. Genetics 156, 1461–1463 (2000)Google Scholar
  308. 308.
    Knuth, D.E.: Two notes on notation. Am. Math. Monthly 99, 403–422 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  309. 309.
    Kolmogorov, A.N.: Über das Gesetz es interierten Logarithmus. Math. Ann. 101, 126–135 (1929). In GermanMathSciNetCrossRefGoogle Scholar
  310. 310.
    Kolmogorov, A.N.: Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458 (1931)MathSciNetzbMATHCrossRefGoogle Scholar
  311. 311.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin (1933). English translation: Foundations of Probability. Chelsea Publ. Co. New York (1950)Google Scholar
  312. 312.
    Kolmogorov, A.N., Dmitriev, N.A.: “Zur Lösung einer biologischen Aufgabe”. Isvestiya Nauchno-Issledovatel’skogo Instituta Matematiki i Mekhaniki pri Tomskom Gosudarstvennom Universitete 2, 1–12 (1938)zbMATHGoogle Scholar
  313. 313.
    Kolmogorov, A.N., Dmitriev, N.A.: Branching stochastic processes. Doklady Akad. Nauk U.S.S.R. 56, 5–8 (1947)Google Scholar
  314. 314.
    Koroborov, V.I., Ochkov, V.F.: Chemical Kinetics with Mathcad and Maple. Springer, Wien (2011)Google Scholar
  315. 315.
    Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. USA 44, 98–104 (1958)ADSCrossRefGoogle Scholar
  316. 316.
    Kou, S.C., Cherayil, B.J., Min, W., English, B.P., Xie, X.S.: Single-molecule Michaelis-Menten equations. J. Phys. Chem. B 109, 19,068–19,081 (2005)Google Scholar
  317. 317.
    Kowalski, C.J.: Non-normal bivariate distributions with normal marginals. Am. Statistician 27, 103–106 (1973)Google Scholar
  318. 318.
    Krichevsky, O., Bonnet, G.: Fluorescence correlation spectroscopy: The technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002)ADSCrossRefGoogle Scholar
  319. 319.
    Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)ADSzbMATHCrossRefGoogle Scholar
  320. 320.
    Kügler, P., Gaubitzer, E., Müller, S.: Perameter identification for chemical reaction systems using sparsity enforcing regularization A case study for the chlorite–iodide reaction. J. Phys. Chem. A 113, 2775–2785 (2009)CrossRefGoogle Scholar
  321. 321.
    Kulzer, F., Orrit, M.: Single-molecule optics. Annu. Rev. Phys. Chem. 55, 585–611 (2004)ADSCrossRefGoogle Scholar
  322. 322.
    Kumaresan, R., Tufts, D.W.: Estimating the parameters of exponentially damped sinusoids and pole-zero modeiling in noise. IEEE Trans. Acoust. Speech Signal Process. 30, 833–840 (1982)CrossRefGoogle Scholar
  323. 323.
    Laidler, K.J.: Chemical Kinetics, 3rd edn. Addison Wesley, Boston (1987)Google Scholar
  324. 324.
    Laidler, K.J., King, M.C.: The development of transition-state theory. J. Phys. Chem. 87, 2657–2664 (1983)CrossRefGoogle Scholar
  325. 325.
    Langevin, P.: Sur la théorie du mouvement Brownien. Comptes Rendues hebdomadaires des Séances de L’Academié des Sceinces 146, 530–533 (1908)zbMATHGoogle Scholar
  326. 326.
    Laplace, P.S.: Mémoirs sur la probabilité des causes par les évènemens. Mémoires de Mathématique et de Physique, Presentés à l’Académie Royale des Sciences, par divers Savans & lûs dans ses Assemblées 6, 621–656 (1774). Reprinted in Laplace’s Ouevres complète 8, 27–65. English translation: Stat. Sci. 1, 364–378 (1986)Google Scholar
  327. 327.
    Laplace, P.S.: Théorie analytique des probabililtés. Courcies Imprimeur, Paris (1812)Google Scholar
  328. 328.
    Laplace, P.S.: Essai philosophique les probabililtés. Courcies Imprimeur, Paris (1814). English edition: A Philosophical Eaasay on Probabilties. Dover Publications, New York (1951)Google Scholar
  329. 329.
    Laurenzi, I.J.: An analytical solution of the stochastic master equation for reversible bimolecular reaction kinetics. J. Chem. Phys. 113, 3315–3322 (2000)ADSCrossRefGoogle Scholar
  330. 330.
    Lauritzen, S.L.: Time series analysis in 1880: A discussion of contributions made by t. n, thiele. Int. Stat. Rev. 49, 319–331 (1981)Google Scholar
  331. 331.
    Le Cam, L.: Maximum likelihood: An introduction. Int. Stat. Rev. 58, 153–171 (1990)zbMATHCrossRefGoogle Scholar
  332. 332.
    Le Novère, N., Shimizu, T.S.: StochSim: Modeling of stochastic biomolecular processes. Bioinformatics 17, 575–576 (2001)CrossRefGoogle Scholar
  333. 333.
    Lee, P.M.: Bayesian Statistics, 3rd edn. Hodder Arnold, London (2004)zbMATHGoogle Scholar
  334. 334.
    Leemis, L.: Poisson to normal. College of William & Mary, Department of Mathematics, Williamsburg, VA (2012). URL: www.math.wm.edu/~leemis/chart/UDR/PDFs/PoissonNormal.pdf
  335. 335.
    Lefever, R., Nicolis, G., Borckmans, P.: The Brusselator: It does oscillate all the same. J. Chem. Soc. Faraday Trans. 1, 1013–1023 (1988)CrossRefGoogle Scholar
  336. 336.
    Legendre, A.M.: Nouvelles méthodes pour la détermination des orbites des comètes. F. Didot, Paris (1805). In FrenchGoogle Scholar
  337. 337.
    Lerch, H.P., Rigler, R., Mikhailov, A.S.: Functional conformational motions in the turnover cycle of cholesterol oxidase. Proc. Natl. Acad. Sci. USA 102, 10,807–10,812 (2005)Google Scholar
  338. 338.
    Leung, K.: Expansion of the master equation for a biomolecular selection model. Bull. Math. Biol. 47, 231–238 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  339. 339.
    Lévy, P.: Calcul de probabilités. Geuthier-Villars, Paris (1925). In FrenchzbMATHGoogle Scholar
  340. 340.
    Lewis, W.C.M.: Studies in catalysis. Part IX. The calculation in absolute measure of velocity constants and equilibrium constants in gaseous systems. J. Chem. Soc. Trans. 113, 471–492 (1918)Google Scholar
  341. 341.
    Li, H., Cao, Y., Petzold, L.R., Gillespie, D.T.: Algortihms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56–61 (2008)CrossRefGoogle Scholar
  342. 342.
    Li, P.T.X., Bustamante, C., Tinoco, Jr., I.: Real-time control of the energy landscape by force directs the folding of RNA molecules. Proc. Natl. Acad. Sci. USA 104, 7039–7044 (2007)ADSCrossRefGoogle Scholar
  343. 343.
    Li, T.: Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. Multiscale Model. Simul. 6, 417–436 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  344. 344.
    Li, T., Kheifets, S., Medellin, D., Raizen, M.G.: Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673–1675 (2010)ADSCrossRefGoogle Scholar
  345. 345.
    Liao, D., Galajda, P., Riehn, R., Ilic, R., Puchalla, J.L., Yu, H.G., Craighead, H.G., Austin, R.H.: Single molecule correlation spectroscopy ib continuous flow mixers with zero-mode waveguides. Opt. Express 16, 10,077–10,090 (2008)Google Scholar
  346. 346.
    Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: Keys and clues. BioScience 51, 341–352 (2001)CrossRefGoogle Scholar
  347. 347.
    Lin, H., Truhlar, D.G.: QM/MM: What have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117, 185–199 (2007)CrossRefGoogle Scholar
  348. 348.
    Lin, S.H., Lau, K.H., Richardson, W., Volk, L., Eyring, H.: Stochastic model of unimolecular reactions and the RRKM theory. Proc. Natl. Acad. Sci. USA 69, 2778–2782 (1972)ADSCrossRefGoogle Scholar
  349. 349.
    Lindeberg, J.W.: Über das Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. 16, 1–23 (1920). In German.Google Scholar
  350. 350.
    Lindeberg, J.W.: Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15, 211–225 (1922). In GermanMathSciNetzbMATHCrossRefGoogle Scholar
  351. 351.
    Lindemann, F.A.: Discussion on the radiation theory on chemical action. Trans. Farad. Soc. 17, 598–606 (1922)CrossRefGoogle Scholar
  352. 352.
    Liouville, J.: Note sur la théorie de la variation des constantes arbitraires. Journal de Mathématiques pure et appliquées 3, 342–349 (1838). In French.Google Scholar
  353. 353.
    Liouville, J.: Mémoire sur l’intégration des équations différentielles du mouvement quelconque de points matériels. Journal de Mathématiques pure et appliquées 14, 257–299 (1849). In French.Google Scholar
  354. 354.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)ADSCrossRefGoogle Scholar
  355. 355.
    Lu, H.P., Xun, L., Xie, X.S.: Single-molecule enzyme dynamics. Science 282, 1877–1882 (1998)ADSCrossRefGoogle Scholar
  356. 356.
    Lu, J., Engl, H.W., Rainer Machné, Schuster, P.: Inverse bifurcation analysis of a model for the mammalian G1/S regulatory module. Lect. Notes Comput. Sci. 4414, 168184 (2007)Google Scholar
  357. 357.
    Lu, J., Engl, H.W., Schuster, P.: Inverse bifurcation analysis: Application to simple gene systems. ABM – Algorithms Mol. Biol. 1, e11 (2006)Google Scholar
  358. 358.
    Lu, Z., Wang, Y.: An introduction to dissipative particle dynamics. In: Monticelli, L., Salonen, E. (eds.) Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology, vol. 924, chap. 24, pp. 617–233. Springer, New York (2013)CrossRefGoogle Scholar
  359. 359.
    Lukacs, E.: Characteristic Functions. Hafner Publ. Co., New York (1970)zbMATHGoogle Scholar
  360. 360.
    Lukacs, E.: A survey of the theory of characteristic functions. Adv. Appl. Probab. 4, 1–38 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  361. 361.
    Lyapunov, A.M.: Sur une proposition de la théorie des probabilités. Bull. Acad. Imp. Sci. St. Pétersbourg 13, 359–386 (1900)Google Scholar
  362. 362.
    Lyapunov, A.M.: Nouvelle forme du théorème sur la limite des probabilités. Mem. Acad. Imp. Sci. St. Pétersbourg, Classe Phys. Math. 12, 1–24 (1901)Google Scholar
  363. 363.
    Magde, D., Elson, E., Webb, W.W.: Thermodynamic fluctuations in a reating system – Measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972)ADSCrossRefGoogle Scholar
  364. 364.
    Mahnke, R., Kaupužs, J., Lubashevsky, I.: Physics of Stochastic Processes. How Randomness Acts in Time. Wiley-VCh Verlag, Weinheim (Bergstraße), DE (2009)zbMATHGoogle Scholar
  365. 365.
    Mallows, C.: Anothre comment on O’Cinneide. Am. Statistician 45, 257 (1991)Google Scholar
  366. 366.
    Mandelbrot, B.B.: The Fractal Geometry of Nature, updated edn. W. H. Freeman Company, New York (1983)Google Scholar
  367. 367.
    Mansuy, R.: The origins of the word “martingale”. Electron. J. Hist. Probab. Stat. 5 (1), 1–10 (2009). Translated by Ronald Sverdlove from the French Histoire des martigales. Mathématiques Sciences Humaines 43 (169), 105–113 (2005)Google Scholar
  368. 368.
    Marcus, R.A.: Unimolecular dissociations and free radical recombination reactions. J. Chem. Phys. 20, 359–364 (1952)ADSCrossRefGoogle Scholar
  369. 369.
    Marcus, R.A.: Vibrational nonadiabaticity and tunneling effects in thranition state theory. J. Chem. Phys. 83, 204–207 (1979)CrossRefGoogle Scholar
  370. 370.
    Marcus, R.A.: Unimolecular reactions, rates and quantum state distributions of products. Philos. Trans. R. Soc. Lond. A 332, 283–296 (1990)ADSCrossRefGoogle Scholar
  371. 371.
    Marcus, R.A., Rice, O.K.: The kinetics of the recombination of methyl radical and iodine atoms. J. Phys. Colloid Chem. 55, 894–908 (1951)CrossRefGoogle Scholar
  372. 372.
    Maruyama, T.: Stochastic Problems in Population Genetics. Springer, Berlin (1977)zbMATHCrossRefGoogle Scholar
  373. 373.
    Marx, D., Jürg Hutter: Ab initio Molecular Dynamics. Basic Theory and Advanced Methods. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  374. 374.
    Mathai, A.M., Saxena, R.K., Haubold, H.J.: A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations. Astrophys. Space Sci. 305, 283–288 (2006)ADSzbMATHCrossRefGoogle Scholar
  375. 375.
    Maxwell, J.C.: Illustartions of the dynamical theory of gases. Part I. on the motions and collisions of perfectly elastic spheres. Philos. Mag. 4th Ser. 19, 19–32 (1860)Google Scholar
  376. 376.
    Maxwell, J.C.: Illustartions of the dynamical theory of gases. Part II. on the process of diffusion of two or more kinds of particles among one another. Philos. Mag. 4th Ser. 20, 21–37 (1860)Google Scholar
  377. 377.
    Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)CrossRefGoogle Scholar
  378. 378.
    McAlister, D.: The law of the geometric mean. Proc. R. Soc. Lond. 29, 367–376 (1879)CrossRefGoogle Scholar
  379. 379.
    McCaskill, J.S.: A stochastic theory of macromolecular evolution. Biol. Cybern. 50, 63–73 (1984)zbMATHCrossRefGoogle Scholar
  380. 380.
    McKean, Jr., H.P.: Stochastic Integrals. Wiley, New York (1969)zbMATHGoogle Scholar
  381. 381.
    McQuarrie, D.A.: Kinetics of small systems. I. J. Chem. Phys. 38, 433–436 (1962)ADSCrossRefGoogle Scholar
  382. 382.
    McQuarrie, D.A.: Stochastic approach to chemical kinetics. J. Appl. Probab. 4, 413–478 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  383. 383.
    McQuarrie, D.A.: Mathematical Methods for Scientists and Engineers. University Science Books, Sausalito (2003)zbMATHGoogle Scholar
  384. 384.
    McQuarrie, D.A., Jachimowski, C.J., Russell, M.E.: Kinetics of small systems. II. J. Chem. Phys. 40, 2914–2921 (1964)ADSCrossRefGoogle Scholar
  385. 385.
    McVinish, R., Pollett, P.K.: A central limit theorem for a discrete time SIS model with individual variation. J. Appl. Probab. 49, 521–530 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  386. 386.
    McVinish, R., Pollett, P.K.: The deterministic limit of a stochastic logistic model with individual variation. J. Appl. Probab. 241, 109–114 (2013)MathSciNetzbMATHGoogle Scholar
  387. 387.
    Medina, M.Ángel., Schwille, P.: Fluorescence correlation spectroscopy for the detection and study of single molecules in biology. BioEssays 24, 758–764 (2002)CrossRefGoogle Scholar
  388. 388.
    Medvegyev, P.: Stochastic Integration Theory. Oxford University Press, New York (2007)zbMATHGoogle Scholar
  389. 389.
    Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)Google Scholar
  390. 390.
    Meintrup, D., Schäffler, S.: Stochastik. Theorie und Anwendungen. Springer, Berlin (2005). In GermanCrossRefGoogle Scholar
  391. 391.
    Melnick, E.L., Tenenbein, A.: Misspecifications of the normal distribution. Am. Statistician 36, 372–373 (1982)Google Scholar
  392. 392.
    Mendel, G.: Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereins in Brünn IV, 3–47 (1866). In GermanGoogle Scholar
  393. 393.
    Meredith, M.: Born in Africa: The Quest for the Origins of Human Life. Public Affairs, New York (2011)Google Scholar
  394. 394.
    Merkle, M.: Jensen’s inequality for medians. Stat. Probab. Lett. 71, 277–281 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  395. 395.
    Messiah, A.: Quantum Mechanics, vol. II. North-Holland Publishing, Amsterdam (1970). Translated from the French by J. PotterGoogle Scholar
  396. 396.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  397. 397.
    Michaelis, L., Menten, M.L.: The kinetics of the inversion effect. Biochem. Z. 49, 333–369 (1913)Google Scholar
  398. 398.
    Miller, R.W.: Propensity: Popper or Peirce? Br. J. Philos. Sci. 26, 123–132 (1975)zbMATHCrossRefGoogle Scholar
  399. 399.
    Mittag-Leffler, M.G.: Sur la nouvelle fonction E α(x). C. R. Acad. Sci. Paris Ser. II 137, 554–558 (1903)zbMATHGoogle Scholar
  400. 400.
    Mode, C.J., Sleeman, C.K.: Stochastic Processes in Genetics and Evolution. Computer Experiments in the Quantification of Mutation and Selection. World Scientific Publishing, Singapore (2012)CrossRefGoogle Scholar
  401. 401.
    Moeendarbarry, E., Ng, T.Y., M.Zangeneh: Dissipative particle dynamics: Introduction, methodology and complex fluid applications – A review. Int. J. Appl. Mech. 1, 737–763 (2009)Google Scholar
  402. 402.
    Moerner, W.E., Kador, L.: Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989)ADSCrossRefGoogle Scholar
  403. 403.
    Monod, J., Wyman, J., Changeaux, J.P.: On the natur of allosteric transitions: A plausible model. J. Mol. Biol. 12, 88–118 (1965)CrossRefGoogle Scholar
  404. 404.
    Montroll, E.W.: Stochastic processes and chemical kinetics. In: Muller, W.M. (ed.) Energetics in Metallurgical Phenomenon, vol. 3, pp. 123–187. Gordon & Breach, New York (1967)Google Scholar
  405. 405.
    Montroll, E.W., Shuler, K.E.: Studies in nonequilibrium rate processes: I. The relaxation of a system of harmonic oscillators. J. Chem. Phys. 26, 454–464 (1956)MathSciNetGoogle Scholar
  406. 406.
    Montroll, E.W., Shuler, K.E.: The application of the theory of stochastic processes to chemical kinetics. Adv. Chem. Phys. 1, 361–399 (1958)MathSciNetGoogle Scholar
  407. 407.
    Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  408. 408.
    Moore, C.C.: Ergodic theorem, ergodic theory and statistical mechanics. Proc. Natl. Acad. Sci. USA 112, 1907–1911 (2015)ADSMathSciNetCrossRefGoogle Scholar
  409. 409.
    Moore, G.E.: Cramming more components onto intergrated circuits. Electronics 38 (8), 4–7 (1965)Google Scholar
  410. 410.
    Moran, P.A.P.: Random processes in genetics. Proc. Camb. Philos. Soc. 54, 60–71 (1958)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  411. 411.
    Moran, P.A.P.: The Statistical Processes of Evolutionary Theroy. Clarendon Press, Oxford (1962)Google Scholar
  412. 412.
    Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. I. McGraw-Hill, Boston (1953)zbMATHGoogle Scholar
  413. 413.
    Motulsky, H.J., Christopoulos, A.: Fitting Models to Biological Data Using Linear and Nonlinear Regression. A Practical Guide to Curve Fitting. GraphPad Software Inc., San Diego (2003)zbMATHGoogle Scholar
  414. 414.
    Mount, D.W.: Bioinformatics. Sequence and Genome Analysis, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2004)Google Scholar
  415. 415.
    Moyal, J.E.: Stochastic processes and statistical physics. J. R. Stat. Soc. B 11, 150–210 (1949)MathSciNetzbMATHGoogle Scholar
  416. 416.
    Müller, S., Regensburger, G.: Generalized mass action systems: Complex balanding equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM J. Appl. Math. 72, 1926–1947 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  417. 417.
    Munz, P., Hudea, I., Imad, J., Smith, R.J.: When zombies attack: Mathematical modelling of an outbreak of zombie infection. In: Tchuenche, J.M., Chiyaka, C. (eds.) Infectious Disease Modelling Research Progress, chap. 4, pp. 133–156. Nova Science Publishers, Hauppauge (2009)Google Scholar
  418. 418.
    Nåsell, I.: On the quasi-stationary distribution of the stochastic logistic epidemic. Math. Biosci. 156, 21–40 (1999)MathSciNetCrossRefGoogle Scholar
  419. 419.
    Nåsell, I.: Extiction and quasi-stationarity in the Verhulst logistic model. J. Theor. Biol. 211, 11–27 (2001)CrossRefGoogle Scholar
  420. 420.
    Neher, E., Sakmann, B.: Single-cheannel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976)ADSCrossRefGoogle Scholar
  421. 421.
    Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)zbMATHGoogle Scholar
  422. 422.
    Nishiyama, K.: Stochastic approach to nonlinear chemical reactions having multiple steatdy states. J. Phys. Soc. Jpn. 37, 44–49 (1974)ADSCrossRefGoogle Scholar
  423. 423.
    Nolan, J.P.: Stable Distributions: Models for Heavy-Tailed Data. Birkhäuser, Boston (2013). Unfinished manuscript. Online at academic2.american.edu/~jpnolan
  424. 424.
    Norden, R.H.: A survey of maximum likelihood estimation I. Int. Stat. Rev. 40, 329–354 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  425. 425.
    Norden, R.H.: A survey of maximum likelihood estimation II. Int. Stat. Rev. 41, 39–58 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  426. 426.
    Norden, R.H.: On the distribution of the time to extinction in the stochastic logistic population model. Adv. Appl. Probab. 14, 687–708 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  427. 427.
    Novitski, C.E.: On Fisher’s criticism of Mendel’s results with the garden pea. Genetics 166, 1133–1136 (2004)CrossRefGoogle Scholar
  428. 428.
    Novitski, C.E.: Revision of Fisher’s analysis of Mendel’s garden pea experiments. Genetics 166, 1139–1140 (2004)CrossRefGoogle Scholar
  429. 429.
    Noyes, R.M., Field, R.J., Körös, E.: Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94, 1394–1395 (1972)Google Scholar
  430. 430.
    Nyman, J.E.: Another generalization of the birthday problem. Math. Mag. 48, 46–47 (1975)MathSciNetCrossRefGoogle Scholar
  431. 431.
    Øksendal, B.K.: Stochastic Differential Equations. An Introduction with Applications, 6th edn. Springer, Berlin (2003)Google Scholar
  432. 432.
    Olbregts, J.: Termolecular reaction of nitrogen monoxide and oxygen. A still unsolved problem. Int. J. Chem. Kinetics 17, 835–848 (1985)CrossRefGoogle Scholar
  433. 433.
    Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)ADSCrossRefGoogle Scholar
  434. 434.
    Orrit, M., Bernard, J.: Single pentacene molecules detected by fluorescence exitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990)ADSCrossRefGoogle Scholar
  435. 435.
    Oster, G.F., Perelson, A.S.: Chemical reaction dynamics. Part I: Geometrical structure. Arch. Ration. Mech. Anal. 55, 230–274 (1974)MathSciNetGoogle Scholar
  436. 436.
    Papapantoleon, A.: An Introduction to Lévy Processes with Applications in Finance. arXiv, Princeton, NJ (2008). ArXiv:0804.0482v2 retrieved July 27, 2015Google Scholar
  437. 437.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)Google Scholar
  438. 438.
    Park, S.Y., Bera, A.K.: Maximum entropy autoregressive conditional heteroskedasticy model. J. Econ. 150, 219–230 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  439. 439.
    Paschotta, R.: Field Guide to Laser Puls Generation. SPIE Press, Bellingham (2008)CrossRefGoogle Scholar
  440. 440.
    Patrick, R., Golden, D.M.: Third-order rate constants of atmospheric importance. Int. J. Chem. Kinetics 15, 1189–1227 (1983)CrossRefGoogle Scholar
  441. 441.
    Pearson, E.S., Wishart, J.: “Student’s” Collected Papers. Cambridge University Press, Cambridge (1942). Cambridge University Press for the Biometrika TrusteesGoogle Scholar
  442. 442.
    Pearson, J.A.: Advanced Statistical Physics. University of Manchester, Manchester, UK (2009). URL: http://www.joffline.com/
  443. 443.
    Pearson, K.: Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. A 186, 343–414 (1895)ADSCrossRefGoogle Scholar
  444. 444.
    Pearson, K.: On the criterion that a given system of deviations form the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5 50 (302), 157–175 (1900)Google Scholar
  445. 445.
    Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)ADSzbMATHCrossRefGoogle Scholar
  446. 446.
    Pearson, K.: Notes on the history of correlation. Biometrika 13, 25–45 (1920)CrossRefGoogle Scholar
  447. 447.
    Pearson, K., Filon, L.N.G.: Contributions to the mathematical theory of evolution. IV. On the probable errors of frequency constants and on the influence of random selection on variation and correlation. Philos. Trans. R. Soc. Lond. A 191, 229–311 (1898)zbMATHGoogle Scholar
  448. 448.
    Peirce, C.S.: Vol.7: Science and philosophy and Vol.8: Reviews, correspondence, and bibliography. In: Burks, A.W. (ed.) The Collected Papers of Charles Sanders Peirce, vol. 7–8. Belknap Press of Harvard University Press, Cambridge (1958)Google Scholar
  449. 449.
    Peterman, E.J.G., Sosa, H., Moerner, W.E.: Single-molecule flourescence spectrocopy and microscopy of biomolecular motors. Annu. Rev. Phys. Chem. 55, 79–96 (2004)ADSCrossRefGoogle Scholar
  450. 450.
    Philibert, J.: One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals 4, 6.1–6.19 (2006)Google Scholar
  451. 451.
    Phillipson, P.E., Schuster, P.: Modeling by Nonlinear Differential Equations. Dissipative and Conservative Processes, World Scientific Series on Nonlinear Science A, vol. 69. World Scientific, Singapore (2009)Google Scholar
  452. 452.
    Picard, P.: Sur les Modèles stochastiques logistiques en Démographie. Ann. Inst. H. Poincaré B II, 151–172 (1965)Google Scholar
  453. 453.
    Plass, W.R., Cooks, R.G.: A model for energy transfer in inelasitc molecular collisions applicable at steady state and non-steady state and for an arbitrary distribution of collision energies. J. Am. Soc. Mass Spectrom. 14, 1348–1359 (2003)CrossRefGoogle Scholar
  454. 454.
    Pollard, H.: The representatioin of \(e^{-x^{\lambda } }\) as a Laplace intgeral. Bull. Am. Math. Soc. 52, 908–910 (1946)MathSciNetzbMATHCrossRefGoogle Scholar
  455. 455.
    Popper, K.: The propensity interpretation of the calculus of probability and of the quantum theory. In: S. Körner, M.H.L. Price (eds.) Observation and Interpretation in the Philosophy of Physics: Proceedings of the Ninth Symposium of the Colston Research Society. Butterworth Scientific Publications, London (1957)Google Scholar
  456. 456.
    Popper, K.: The propensity theory of probability. Br. J. Philos. Sci. 10, 25–62 (1960)Google Scholar
  457. 457.
    Poznik, G.D., Henn, B.M., Yee, M.C., Sliwerska, E., Lin, A.A., Snyder, M., Quintana-Murci, L., Kidd, J.M., Underhill, P.A., Bustamante, C.D.: Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science 341, 562–565 (2013)ADSCrossRefGoogle Scholar
  458. 458.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes. The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  459. 459.
    Price, R.: LII. an essay towards soliving a problem in the doctrine of chances. By the late Ref. Mr. Bayes, communicated by Mr. Price, in a letter to John Canton, M.A. and F.R.S. Philos. Trans. R. Soc. Lond. 53, 370–418 (1763)Google Scholar
  460. 460.
    Protter, P.E.: Stochastic Intergration and Differential Equations, Applications of Mathematics, vol. 21, 2nd edn. Springer, Berlin (2004)Google Scholar
  461. 461.
    Provencher, S.W., Dovi, V.G.: Direct analysis of continuous relaxation spectra. J. Biophys. Biochem. Methods 1, 313–318 (1979)CrossRefGoogle Scholar
  462. 462.
    Qian, H., Elson, E.L.: Single-molecule enzymology: Stochastic Michaelis-Menten kinetics. Biophys. Chem. 101–102, 565–576 (2002)CrossRefGoogle Scholar
  463. 463.
    Rao, C.R.: Information and the acuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–89 (1945)MathSciNetzbMATHGoogle Scholar
  464. 464.
    Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: The implicit τ-leaping method. J. Chem. Phys. 119, 12,784–12,794 (2003)Google Scholar
  465. 465.
    Rice, O.K., Ramsperger, H.C.: Theories of unimolecular gas reactions at low pressures. J. Am. Chem. Soc. 49, 1617–1629 (1927)CrossRefGoogle Scholar
  466. 466.
    Rigler, R., Mets, U., Widengren, J., Kask, P.: Fluorescence correlation spectroscopy with high count rate and low-background-analysis of translational diffusion. Eur. Biophys. J. 22, 169–175 (1993)CrossRefGoogle Scholar
  467. 467.
    Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and Engineering, 2nd edn. Cambridge University Press, Cambridge (2002)zbMATHCrossRefGoogle Scholar
  468. 468.
    Risken, H.: TheFokker-Planck Equation. Methods of Solution and Applications, 2nd edn. Springer, Berlin (1989)Google Scholar
  469. 469.
    Robinett, R.W.: Quantum Mechanics. Classical Results, Modern Systems, and Visualized Examples. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  470. 470.
    Roebuck, J.R.: The rate of the reaction between arsenious acid and iodine in acid solution, the rate of the reverse reaction, and the equilibrium between them. J. Phys. Chem. 6, 365–398 (1901)CrossRefGoogle Scholar
  471. 471.
    Rotman, B.: Measurement of activity of single molecules of β-d-galactosidase. Proc. Natl. Acad. Sci. USA 47, 1981–1991 (1961)ADSCrossRefGoogle Scholar
  472. 472.
    Sagués, F., Epstein, I.R.: Nonlinear chemical dynamics. J. Chem. Soc. Dalton Trans. 2003, 1201–1217 (2003)CrossRefGoogle Scholar
  473. 473.
    Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemicel or biochemical reactions. J. Chem. Phys. 122, e054,103 (2005)CrossRefGoogle Scholar
  474. 474.
    Sanft, K.R., Wu, S., Roh, M., Fu, J., Lim, R.K., Petzold, L.R.: StochKit2: Software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27, 2457–2458 (2011)CrossRefGoogle Scholar
  475. 475.
    Sato, K.: Lévy Processes and Infinitely Divisible Distributions, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  476. 476.
    Scatchard, G.: The attractions of proteins for smal molecules and ions. Ann. New York Acad. Sci. 51, 660–672 (1949)ADSCrossRefGoogle Scholar
  477. 477.
    Scher, H., Shlesinger, M.F., Bendler, J.T.: Time scale invariance in transport and relaxation. Phys. Today 44 (1), 26–34 (1991)ADSCrossRefGoogle Scholar
  478. 478.
    Schilling, M.F., Watkins, A.E., Watkins, W.: Is human height bimodal? Am. Statistician 56, 223–229 (2002)MathSciNetCrossRefGoogle Scholar
  479. 479.
    Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions. Z. Physik 253, 147–161 (1972)ADSCrossRefGoogle Scholar
  480. 480.
    Schoutens, W.: Lévy Processes in Finance. Wiley Series in Probability and Statistics. Wiley, Chichester (2003)CrossRefGoogle Scholar
  481. 481.
    Schubert, M., Weber, G.: Quantentheorie. Grundlagen und Anwendungen. Spektrum Akademischer Verlag, Heidelberg, DE (1993). In GermanGoogle Scholar
  482. 482.
    Schuster, P.: Mathematical modeling of evolution. Solved and open problems. Theory Biosci. 130, 71–89 (2011)CrossRefGoogle Scholar
  483. 483.
    Schuster, P.: Are computer scientists the sutlers of modern biology? Bioinformatics is indispesible for progress in molecular life sciences but does not get credit for its contributions. Complexity 19 (4), 10–14 (2014)Google Scholar
  484. 484.
    Schuster, P.: Quasispecies on fitness landscapes. In: Domingo, E., Schuster, P. (eds.) Quasispecies: From Theory to Experimental Systems, Current Topics in Microbiology and Immunology, vol. 392, chap. 4, pp. ppp–ppp. Springer, Berlin (2016). DOI 10.10007/82_2015_469Google Scholar
  485. 485.
    Schuster, P., Sigmund, K.: Replicator dynamics. J. Theor. Biol. 100, 533–538 (1983)MathSciNetCrossRefGoogle Scholar
  486. 486.
    Schuster, P., Sigmund, K.: Random selection - A simple model based on linear birth and death processes. Bull. Math. Biol. 46, 11–17 (1984)zbMATHGoogle Scholar
  487. 487.
    Schwabl, F.: Quantum Mechanics, 4th edn. Springer, Berlin (2007)zbMATHGoogle Scholar
  488. 488.
    Schwarz, G.: Kinetic analysis by chemical relaxation methods. Rev. Mod. Phys. 40, 206–218 (1968)ADSCrossRefGoogle Scholar
  489. 489.
    Seber, G.A., Lee, A.J.: Linear Regression Analysis. Wile Series in Probabiity and Statistics. Wiley-Intersceince, Hoboken (2003)zbMATHCrossRefGoogle Scholar
  490. 490.
    Sehl, M., Alekseyenko, A.V., Lange, K.L.: Accurate stochastic simulation via the step anticipation τ-leaping (SAL) algorithm. J. Comp.,Biol. 16, 1195–1208 (2009)Google Scholar
  491. 491.
    Selmeczi, D., Tolić-Nørrelykke, S., Schäffer, E., Hagedorn, P.H., Mosler, S., Berg-Sørensen, K., Larsen, N.B., Flyvbjerg, H.: Brownian motion after Einstein: Some new applications and new experiments. Lect. Notes Phys. 711, 181–199 (2007)ADSCrossRefGoogle Scholar
  492. 492.
    Seneta, E.: Non-negative Matrices and Markov Chains, 2nd edn. Springer, New York (1981)zbMATHCrossRefGoogle Scholar
  493. 493.
    Seneta, E.: The central limit problem and lienear least squares in pre-revolutionary Russia: The background. Math. Scientist 9, 37–77 (1984)MathSciNetzbMATHGoogle Scholar
  494. 494.
    Senn, H.M., Thiel, W.: QM/MM Methods for biological systems. Top. Curr. Chem. 268, 173–290 (2007)CrossRefGoogle Scholar
  495. 495.
    Senn, H.M., Thiel, W.: QM/MM Methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229 (2009)CrossRefGoogle Scholar
  496. 496.
    Seydel, R.: Practical Bifurcation and Stability Analysis. From Equilibrium to Chaos, Interdisciplinary Applied Mathematics, vol. 5, 2nd edn. Springer, New York (1994)Google Scholar
  497. 497.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetzbMATHCrossRefGoogle Scholar
  498. 498.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)zbMATHGoogle Scholar
  499. 499.
    Shapiro, B.E., Levchenko, A., World, E.M.M.B.J., Mjolsness, E.D.: Cellerator: Extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678 (2003)CrossRefGoogle Scholar
  500. 500.
    Sharpe, M.J.: Transformations of diffusion by time reversal. Ann. Probab. 8, 1157–1162 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  501. 501.
    Shuler, K.E.: Studies in nonequilibrium rate processes: II. The relaxation of vibrational nonequilibrium distributions in chemical reactions and shock waves. J. Phys. Chem. 61, 849–856 (1957)Google Scholar
  502. 502.
    Shuler, K.E., Weiss, G.H., Anderson, K.: Studies in nonequilibrium rate processes. V. The relaxation of moments derived from a master equation. J. Math. Phys. 3, 550–556 (1962)zbMATHGoogle Scholar
  503. 503.
    Sotiropoulos, V., Kaznessis, Y.N.: Analytical derivation of moment equations in stochastic chemical kinetics. Chem. Eng. Sci. 66, 268–277 (2011)CrossRefGoogle Scholar
  504. 504.
    Stauffer, P.H.: Flux flummoxed: A proposal for consistent usage. Ground Water 44, 125–128 (2006)CrossRefGoogle Scholar
  505. 505.
    Steffensen, J.F.: “deux problème du calcul des probabilités”. Ann. Inst. Henri Poincaré 3, 319–344 (1933)MathSciNetzbMATHGoogle Scholar
  506. 506.
    Stepanow, S., Schütz, G.M.: The distribution function os a semiflexible polymer and random walks with constraints. Europhys. Lett. 60, 546–551 (2002)ADSCrossRefGoogle Scholar
  507. 507.
    Stevens, J.W.: What is Bayesian Statistics? What is …? Hayward Medical Communications, a division of Hayward Group Ltd., London (2009)Google Scholar
  508. 508.
    Stigler, S.M.: Laplace’s 1774 memoir on inverse probability. Stat. Sci. 1, 359–378 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  509. 509.
    Stigler, S.M.: The epic story of maximum likelihood. Stat. Sci. 22, 598–620 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  510. 510.
    Stone, J.V.: Bayes’ Rule. A Tutorial to Bayesian Analysis. Sebtel Press, England (2013)zbMATHGoogle Scholar
  511. 511.
    Strang, G.: Linear Algebra and its Applications, 3rd edn. Brooks Cole Publishing Co, Salt Lake City (1988)zbMATHGoogle Scholar
  512. 512.
    Stratonovich, R.L.: Introduction to the Theory of Random Noise. Gordon and Breach, New York (1963)zbMATHGoogle Scholar
  513. 513.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press at Perseus Books, Cambridge (1994)Google Scholar
  514. 514.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics. Volume 1: Distribution Theory, 5th edn. Charles Griffin & Co., London (1987)Google Scholar
  515. 515.
    Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics. Volume 2: Classical Inference and Relationship, 5th edn. Edward Arnold, London (1991)Google Scholar
  516. 516.
    Student: The probable error of a mean. Biometrika 6, 1–25 (1908)Google Scholar
  517. 517.
    Suber, P.: A crash course in the mathematics of infinite sets. St.John’s Rev. XLIV (2), 35–59 (1998)Google Scholar
  518. 518.
    Suppes, P.: Axiomatic Set Theory. Dover Publications, New York (1972)zbMATHGoogle Scholar
  519. 519.
    Swamee, P.K.: Near lognormal distribution. J. Hydrol. Eng. 7, 441–444 (2007)CrossRefGoogle Scholar
  520. 520.
    Swetina, J., Schuster, P.: Self-replication with errors - A model for polynucleotide replication. Biophys. Chem. 16, 329–345 (1982)CrossRefGoogle Scholar
  521. 521.
    Szathmáry, E., Gladkih, I.: Sub-exponential growth and coexistence of non-enzymatically replicating templates. J. Theor. Biol. 138, 55–58 (1989)CrossRefGoogle Scholar
  522. 522.
    Tang, H., Siegmund, D.O., Shen, P., Oefner, P.J., Feldman, M.W.: Frequentist estimation of coalescence times from nucleotide sequence data using a tree-based partition. Genetics 161, 448–459 (2002)Google Scholar
  523. 523.
    Tao, T.: An Introduction to Measure Theory, Graduate Studies in Mathematics, vol. 126. American Mathematical Society, Providence (2011)Google Scholar
  524. 524.
    Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Philadelphia (2005)zbMATHCrossRefGoogle Scholar
  525. 525.
    Tavaré, S.: Line-of-descent and genealogical processes, and their application in population genetics models. Theor. Popul. Biol. 26, 119–164 (1984)zbMATHCrossRefGoogle Scholar
  526. 526.
    Taylor, H.M., Karlin, S.: An Introduction to Stochastic Modeling, 3rd edn. Academic press, San Diego (1998)zbMATHGoogle Scholar
  527. 527.
    Taylor, M.E.: Measure Theory and Intergration, Graduate Studies in Mathematics, vol. 76. American Mathematical Society, Providence (2006)Google Scholar
  528. 528.
    Thiele, T.N.: Om Anvendelse af midste Kvadraters Methode i nogle Tilfælde, hvor en Komplikation af visse Slags uensartede tilfædige Feijlkilder giver Feijlene en ’systenatisk’ Karakter. Vidensk. Selsk. Skr. 5. rk., naturvid. og mat. Afd. 12, 381–408 (1880). In DanishGoogle Scholar
  529. 529.
    Thomas, G.B., Finney, R.L.: Calculus and Analytic Geometry, 9th edn. Addison-Wesley, Reading (1996)zbMATHGoogle Scholar
  530. 530.
    Thompson, C.J., McBride, J.L.: On Eigen’s theory of the self-organization of matter and the evolution of biological macromolecules. Math. Biosci. 21, 127–142 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  531. 531.
    Tolman, R.C.: The Principle of Statistical Mechanics. Oxford University Press, Oxford (1938)zbMATHGoogle Scholar
  532. 532.
    Tsukahara, H., Ishida, T., Mayumi, M.: Gas-phase oxidation of nitric oxide: Chemical kinetics and rate constant. Nitric Oxide Biol. Chem. 3, 191–198 (1999)CrossRefGoogle Scholar
  533. 533.
    Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237 (641), 37–72 (1952)ADSMathSciNetCrossRefGoogle Scholar
  534. 534.
    Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the Brownian motion. Phys. Rev. 36, 823–841 (1930)ADSzbMATHCrossRefGoogle Scholar
  535. 535.
    Ullah, M., Wolkenhauer, O.: Family tree of Markov models in systems biology. IET Syst. Biol. 1, 247–254 (2007)CrossRefGoogle Scholar
  536. 536.
    Ullah, M., Wolkenhauer, O.: Stochastic Approaches for Systems Biology. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  537. 537.
    van den Berg, T.: Calibrating the Ornstein-Uhlenbeck-Vasicek model. Sitmo – Custom Financial Research and Development Services, www.sitmo.com/article/calibrating-the-ornstein-uhlenbeck-model/ (2011). Retrieved April 20, 2014
  538. 538.
    van den Bos, A.: Parameter Estimation for Scientists and Engineers. Wiley, Hoboken (2007)zbMATHGoogle Scholar
  539. 539.
    Van Doorn, E.A.: Quasi-stationary distribution and convergence to quasi-stationarity of birth-death processes. Adv. Appl. Probab. 23, 683–700 (1991)zbMATHCrossRefGoogle Scholar
  540. 540.
    van Kampen, N.G.: A power series expansion of the master equation. Can. J. Phys. 39, 551–567 (1961)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  541. 541.
    van Kampen, N.G.: The expansion of the master equation. Adv. Chem. Phys. 34, 245–309 (1976)Google Scholar
  542. 542.
    van Kampen, N.G.: Remarks on non-markov processes. Braz. J. Phys. 28, 90–96 (1998)ADSGoogle Scholar
  543. 543.
    van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  544. 544.
    van Oijen, A.M., Blainey, P.C., Crampton, D.J., Richardson, C.C., Ellenberger, T., Xie, X.S.: Single-moleucles kinetics of λ exconuclease reveal base dependence and dynamic disorder. Science 301, 1235–1238 (2003)ADSCrossRefGoogle Scholar
  545. 545.
    van Slyke, D.D., Cullen, G.E.: The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180 (1914)Google Scholar
  546. 546.
    Vasicek, O.: An equlibrium characterization of the term structure. J. Financ. Econ. 5, 177–188 (1977)CrossRefGoogle Scholar
  547. 547.
    Venn, J.: On the diagrammatic and mechanical representation of propositions and reasonings. Lond. Edinb. Diblin Philos. Mag. J. Sci. 9, 1–18 (1880)CrossRefGoogle Scholar
  548. 548.
    Venn, J.: Sybolic Logic. MacMillan, London (1881). Second edition, 1984. Reprinted by Lenox Hill Pub. & Dist. Co., 1971Google Scholar
  549. 549.
    Venn, J.: The Logic of Chance. An Essay on the Foundations and Province of the Theory of Probability, with Especial Reference to its Logical Bearings and its Application to Moral and Social Science, and to Statistics, 3rd edn. MacMillan, London (1888)Google Scholar
  550. 550.
    Verhulst, P.: Notice sur la loi que la population pursuit dans son accroisement. Corresp. Math. Phys. 10, 113–121 (1838)Google Scholar
  551. 551.
    Viswanathan, G.M., Raposo, E.P., da Luz, M.G.E.: Lévy flights and superdiffusion in the context of biological encounters and random searches. Phys. Life Rev. 5, 133–150 (2008)ADSCrossRefGoogle Scholar
  552. 552.
    Vitali, G.: Sul problema della misura dei gruppi di pinti di una retta. Gamberini E. Parmeggiani, Bologna (1905)zbMATHGoogle Scholar
  553. 553.
    Vitali, G.: Sui gruppi di punti e sulle funzioni di variabili reali. Atti dell’Accademia delle Science di Torino 43, 75–92 (1908)zbMATHGoogle Scholar
  554. 554.
    Volkenshtein, M.V.: Entropy and Information, Progress in Mathematical Physics, vol. 57. Birkhäuser Verlag, Basel, CH (2009). German version: W. Ebeling, Ed. Entropie und Information. Wissenschaftliche Taschenbücher, Band 306, Akademie-Verlag, Berlin (1990). Russian Edition: Nauka Publ., Moscow (1986)Google Scholar
  555. 555.
    von Kiedrowski, G.: A self-replicating hexanucleotide. Angew. Chem. Internat. Ed. 25, 932–935 (1986)CrossRefGoogle Scholar
  556. 556.
    von Kiedrowski, G., Wlotzka, B., Helbig, J., Matzen, M., Jordan, S.: Parabolic growth of a self-replicating hexanucleotide bearing a 3’-5’-phosphoamidate linkage. Angew. Chem. Int. Ed. 30, 423–426 (1991)CrossRefGoogle Scholar
  557. 557.
    von Mises, R.: Über Aufteilungs- und Besetzungswahrscheinlichkeiten. Revue de la Faculté des Sciences de l’Université d’Istanbul, N.S. 4, 145–163 (1938–1939). In German. Reprinted in Selected Papers of Richard von Mises, vol.2, American Mathematical Society, 1964, pp. 313–334Google Scholar
  558. 558.
    von Neumann, J.: Proof of the quasi-ergodic hypothesis. Proc. Natl. Acad. Sci. USA 4, 70–82 (1932)ADSzbMATHCrossRefGoogle Scholar
  559. 559.
    von Smoluchowski, M.: Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys. (Leipzig) 21, 756–780 (1906)Google Scholar
  560. 560.
    Waage, P., Guldberg, C.M.: Studies concerning affinity. J. Chem. Educ. 63, 1044–1047 (1986). English translation by Henry I. AbrashGoogle Scholar
  561. 561.
    Walter, N.G.: Single molecule detection, analysis, and manipulation. In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry, pp. 1–10. Wiley, Hoboken (2008)Google Scholar
  562. 562.
    Watson, H.W., Galton, F.: On the probability of the extinction of families. J. Anthropol. Inst. G. Br. Irel. 4, 138–144 (1875)Google Scholar
  563. 563.
    Weber, N.A.: Dimorphism of the African oecophylla worker and an anomaly (hymenoptera formicidae). Ann. Entomol. Soc. Am. 39, 7–10 (1946)CrossRefGoogle Scholar
  564. 564.
    Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Mh. Chem. 32, 849–906 (1911). In GermanzbMATHGoogle Scholar
  565. 565.
    Wei, W.W.S.: Time Series Analysis. Univariate and Multivariate Methods. Addison-Wesley Publishing, Redwood City (1990)Google Scholar
  566. 566.
    Weiss, G.H., Dishon, M.: On the asympotitic behavior of the stochastic and deterministic models of an epidemic. Math. Biosci. 11, 261–265 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  567. 567.
    Weisstein, E.W.: Cross-Correlation. MathWorld - A Wolfram Web Resource. The Wolfram Centre, Long Hanborough, UK. http://www.Mathworld.wolfram.com/Cross-Correlation.html, retrieved July 17, 2015
  568. 568.
    Weisstein, E.W.: Fourier Transform. MathWorld - A Wolfram Web Resource. The Wolfram Centre, Long Hanborough, UK. http://www.Mathworld.wolfram.com/FourierTransform.html, retrieved July 17, 2015
  569. 569.
    Widengren, J., Mets, Ülo., Rigler, R.: Photodynamic properties of green fluorescent proteins investigated by fluoresecence correlation spectroscopy. Chem. Phys. 250, 171–186 (1999)Google Scholar
  570. 570.
    Wilheim, T.: The smallest chemical rwaction system with bistability. BMC Syst. Biol. 3, e90 (2009)CrossRefGoogle Scholar
  571. 571.
    Wilheim, T., Heinrich, R.: Smallest chemical rwaction system with Hopf bifurcation. J. Math. Chem. 17, 1–14 (1995)MathSciNetCrossRefGoogle Scholar
  572. 572.
    Wilkinson, D.J.: Stochastic modeling for quatitative description of heterogeneous biological systems. Nat. Rev. Genet. 10, 122–133 (2009)CrossRefGoogle Scholar
  573. 573.
    Wilkinson, D.J.: Stochastic Modelling for Systems Biology, 2nd edn. Chapman & Hall/CRC Press – Taylor and Francis Group, Boca Raton (2012)zbMATHGoogle Scholar
  574. 574.
    Williams, D.: Diffusions, Markov Processes and Martingales. Volume 1: Foundations. Wiley, Chichester (1979)Google Scholar
  575. 575.
    Wills, P.R., Kauffman, S.A., Stadler, B.M.R., Stadler, P.F.: Selection dynamics in autocatalytic systems: Templates replicating through binary ligation. Bull. Math. Biol. 60, 1073–1098 (1998)zbMATHCrossRefGoogle Scholar
  576. 576.
    Winzor, D.J., Jackson, C.M.: Interpretation of the temperature dependence of equilibrium and rate contants. J. Mol. Recognit. 19, 389–407 (2006)CrossRefGoogle Scholar
  577. 577.
    Wolberg, J.: Data Analysis Using the Method of Least Squares. Extracting the Most Information from Experiments. Springer, Berlin (2006)Google Scholar
  578. 578.
    Wold, H.: A Study in the Analysis of Time Series, second revised edn. Almqvist and Wiksell Book Co., Uppsala, SE (1954). With an appendix on Recent Developments in Time Series Analysis by Peter WhittleGoogle Scholar
  579. 579.
    Wright, S.: Evolution in Mendelian populations. Genetics 16, 97–159 (1931)Google Scholar
  580. 580.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Int. Proceedings of the Sixth International Congress on Genetics, vol. 1, pp. 356–366. Brooklyn Botanic Garden, Ithaca (1932)Google Scholar
  581. 581.
    Yang, Y., Rathinam, M.: Tau leaping of stiff stochastical chemical systems via local central limit approximation. J. Comp. Phys. 242, 581–606 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  582. 582.
    Yashonath, S.: Relaxation time of chemical reactions from network thermodynamics. J. Phys. Chem. 85, 1808–1810 (1981)CrossRefGoogle Scholar
  583. 583.
    Zhabotinsky, A.M.: A history of chemical oscillations and waves. Chaos 1, 379–386 (1991)ADSCrossRefGoogle Scholar
  584. 584.
    Zhang, W.K., Zhang, X.: Single molecule mechanochemistry of macromolecules. Prog. Polym. Sci. 28, 1271–1295 (2003)CrossRefGoogle Scholar
  585. 585.
    Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, San Diego (1998)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Peter Schuster
    • 1
  1. 1.Institut für Theoretische ChemieUniversität WienWienAustria

Personalised recommendations