Skip to main content

Peculiar Miniature-Related Structural Features of Different Organ Systems of Insects

  • Chapter
  • First Online:
At the Size Limit - Effects of Miniaturization in Insects
  • 872 Accesses

Abstract

Miniaturization leads to considerable changes in the structure of insects, affecting almost all organs and tissues. The nature of such changes in different organ systems can be quite different. The smallest insects, comparable in size to unicellular organisms, display modifications not only at the level of organs, but also at the level of cells. Different groups of insects display both shared and unique consequences of miniaturization. In this chapter the peculiar morphological features related to miniaturization that are found in different organ systems in microinsects of different orders are reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amornsak, W., Cribb, B., & Gordh, G. (1998). External morphology of antennal sesilla of Trichogramma australicum Girault (Hym.: Trichogrammatidae). International Journal of Insect Morphology and Embryology, 27(2), 67–82.

    Article  Google Scholar 

  • Antonov, A. V. (2009). Mиниaтюpизaция paзмepoв тeлa и нaпpaвлeния эвoлюции жилкoвaния кpыльeв y жaлящиx пepeпoнчaтoкpылыx нaceкoмыx (Insecta: Hymenoptera: Aculeata: Apoidea) (oпыт фyнкциoнaльнoй интepпpeтaции (Miniaturization of body side and trends of the evolution of wing venation in Apoidea (Insecta: Hymenoptera: Aculeata)). Sbornik Trudov Zoologicheskogo Muzeya MGU, 50, 247–274.

    Google Scholar 

  • Atkins, M. D., & Farris, S. H. (1962). A contribution to the knowledge of flight muscle changes in the Scolytidae (Coleoptera). Canadian Entomologist, 94(1), 25–32.

    Article  Google Scholar 

  • Bakkendorf, O. (1934). Biological investigations on some Danish hymenopterous egg-parasites, especially in homopterous and heteropterous eggs, with taxonomic remarks and descriptions of new species. Entomologiske Meddelelser, 19, 1–134.

    Google Scholar 

  • Bate, C. M. (1976). Embryogenesis of an insect nervous system I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. Journal of Embryology and Experimental Morphology, 35, 107–123.

    CAS  PubMed  Google Scholar 

  • Bernardo, U., & Viggiani, G. (2002). Biological data on Megaphragma amalphitanum Viggiani and Megaphragma mymaripenne Timberlake (Hymenoptera: Trichogrammatidae), egg-parasitoid of H. haemorrhoidalis (Bouché) (Thysanoptera: Thripidae) in southern Italy. Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri, 58, 77–85.

    Google Scholar 

  • Beutel, R. G., Maddison, D. R., & Haas, A. (1999). Phylogenetic analysis of Myxophaga (Coleoptera) using larval characters. Systematic Entomology, 24, 1–23.

    Article  Google Scholar 

  • Beutel, R. G., Pohl, H., & Hunefeld, F. (2005). Strepsipteran brain and effect of miniaturization (Insecta). Arthropod Structure & Development, 34(3), 301–313.

    Article  Google Scholar 

  • Beutel, R. G., & Haas, A. (1998). Larval head morphology of Hydroscapha natans LeConte 1874 (Coleoptera, Myxophaga, Hydroscaphidae) with special reference to miniaturization. Zoomorphology, 118(2), 103–116.

    Article  Google Scholar 

  • Beutel, R. G., & Haas, A. (2000). Phylogenetic releationships of the suborders of Coleoptera (Insecta). Cladistics, 16, 103–141.

    Article  Google Scholar 

  • Bhakthan, N. M. G., Borden, J. H., & Nair, K. K. (1970). Fine structure of degenerating and regenerating flight muscles in a bark beetle, Ips confusus. I. Degeneration. Journal of Cell Science, 6, 807–819.

    CAS  PubMed  Google Scholar 

  • Bhakthan, N. M. G., Borden, J. H., & Nair, K. K. (1971). Fine structure of degenerating and regenerating flight muscles in a bark beetle, Ips confusus. II. Regeneration. Canadian Journal of Zoology, 49(1), 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Bittner, G. D. (1988). Long term survival of severed distal axonal stumps in vertebrates and invertebrates. American Zoologist, 28, 1165–1179.

    Article  Google Scholar 

  • Bittner, G. D. (1991). Long-term survival of anucleate axons and its implications for nerve regeneration. Trends in Neurosciences, 14, 188–193.

    Article  CAS  PubMed  Google Scholar 

  • Boire, D., & Baron, G. (1994). Allometric comparison of brain and main brain subdivisions in birds. Brain Research, 35, 49–66.

    CAS  Google Scholar 

  • Boivin, G. (2010). Reproduction and immature development of egg parasitoids. In F. L. Consoli, J. R. P. Parra, & R. A. Zucchi (Eds.), Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (pp. 1–23). Houten: Springer.

    Google Scholar 

  • Borden, J. H., & Slater, C. E. (1968). Induction of flight muscle degeneration by synthetic juvenile hormone in Ips confusus (Coleoptera: Scolytidae). Zeitschrift für vergleichende Physiologie, 61, 366–368.

    Article  Google Scholar 

  • Borden, J. H., & Slater, C. E. (1969). Flight muscle volume change in Ips confusus (Coleoptera: Scolytidae). Canadian Journal of Zoology, 47, 29–32.

    Article  Google Scholar 

  • Boxshall, G. A. (1982). On the anatomy of the misophirioid copepods, with special reference to Benthomisophria palliata Sars. Philosophical Transactions of the Royal Society of London B, 297(1086), 125–181.

    Article  Google Scholar 

  • Brandt, R., Rohlfi, T., Rybak, J., Krofczik, S., Maye, A., Westerhoff, M., et al. (2005). Threedimensional average-shape atlas of the honeybee brain and its applications. Journal of Comparative Neurology, 492, 1–19.

    Article  PubMed  Google Scholar 

  • Brenzinger, B., Haszprunar, G., & Schrodl, M. (2013). At the limits of a successful body plan - 3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod. Frontiers in Zoology, 10(1), 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaika, S. Y. (2010). Heйpoмopфoлoгия нaceкoмыx (Insect neuromorphology). Moscow: Tipografiya Rossel’hozakademii.

    Google Scholar 

  • Chapman, J. A. (1956). Flight-muscle changes during adult life in a scolytid beetle. Nature, 177, 1183–1184.

    Article  Google Scholar 

  • Das, P., Chen, L., Sharma, K. R., & Fadamiro, H. Y. (2011). Abundance of antennal chemosensilla in two parasitoid wasps with different degree of host specificity may explain sexual and species differences in their response to host-related volatiles. Microscopy Research and Technique, 74(10), 900–909.

    Article  PubMed  Google Scholar 

  • De Marzo, L. (1992). Osservationi anatomiche sui genitali interni maschili in alcuni ptilidi (Coleoptera). Entomologica Bari, 27, 107–115.

    Google Scholar 

  • Desender, K. (2000). Flight muscle development and dispersal in life cycle of carabid beetles: Patterns and processes. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Entomologie, 70, 13–31.

    Google Scholar 

  • Doe, C. Q., & Goodman, C. S. (1985). Early events in insect neurogenesis. I. Development and segmental differences in the pattern of neuronal precursor cells. Development Biology, 111, 193–205.

    Article  CAS  Google Scholar 

  • Dreyer, D., Vitt, H., Dippel, S., Goetz, B., el Jundi, B., Kollmann, M., et al. (2010). 3D standard brain of the red flour beetle Tribolium castaneum: a tool to study metamorphic development and adult plasticity. Frontiers in Systems Neuroscience, 4(3), 1–13.

    Google Scholar 

  • Dweck, K. M. (2009). Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron, 40, 769–774.

    Article  PubMed  Google Scholar 

  • Dybas, L. K., & Dybas, H. S. (1981). Coadaptation and taxanomic differentiation of sperm and spermathecae in featherwing beetles. Evolution, 35(1), 168–174.

    Article  Google Scholar 

  • Dybas, L. K., & Dybas, H. S. (1987). Ultrastructure of mature spermatozoa of a minute featherwing beetle from Sri Lanka (Coleoptera, Ptiliidae: Bambara). Journal of Morphology, 191, 63–76.

    Article  Google Scholar 

  • el Jundi, B., Huetteroth, W., Kurylas, A. E., & Schachtner, J. (2009). Anisometric brain dimorphism revisited: implementation of a volumetric 3D standard brain in Manduca sexta. Journal of Comparative Neurology, 517, 210–225.

    Article  PubMed  Google Scholar 

  • Faisal, A. A., White, J. A., & Laughlin, S. B. (2005). Channel noise places limits on the miniaturization of the brain’s wiring. Current Biology, 12(12), 1143–1149.

    Article  CAS  Google Scholar 

  • Fischer, S., Müller, C. H. G., & Meyer-Rochow, V. B. (2011). How small can small be: the compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size. Visual Neuroscience, 28(4), 295–308.

    Article  PubMed  Google Scholar 

  • Fischer, S., Meyer-Rochow, V. B., & Müller, C. H. G. (2012). Challenging limits: ultrastructure and size-related functional constraints of the compound eye of Stigmella microtheriella (Lepidoptera: Nepticulidae). Journal of Morphology, 273(9), 1064–1078.

    Article  PubMed  Google Scholar 

  • Fischer, S., Meyer-Rochow, V. B., & Müller, C. H. G. (2014). Compound Eye Miniaturization in Lepidoptera: a comparative morphological analysis. Acta Zoologica, 95(4), 438–464.

    Article  Google Scholar 

  • Goossen, H. (1949). Untersuchungen an gehirnen verschieden grosser, jeweils verwandter Coleopteren- und Hymenopteren. Arten Zoologische Jahrbücher Abteilung für Allgemeine Zoologie, 62, 1–64.

    Google Scholar 

  • Gorodkov, K. B. (1984). Oлигoмepизaция и эвoлюция cиcтeм мopфoлoгичecкиx cтpyктyp: 2. Oлигoмepизaция и yмeньшeниe paзмepoв тeлa (Oligomerization and evolution of the morphological structure systems. 2. Oligomerization and body size decrease. Zoologicheskii Zhurnal, 63, 1765–1778.

    Google Scholar 

  • Grebennikov, V. V., & Beutel, R. G. (2002). Morphology of the minute larva of Ptinella tenella, with special reference to effects of miniaturisation and the systematic position of Ptiliidae (Coleoptera: Staphylinoidea). Arthropod Structure & Development, 31(2), 157–172.

    Article  Google Scholar 

  • Heath, R. V., & Evans, M. E. G. (1990). The relationship between the ventral nerve cord, body size and phylogeny in ground beetles (Coleoptera: Carabidae). Zoological Journal of the Linnean Society, 98(3), 259–293.

    Article  Google Scholar 

  • Heming, B. S. (1978). Structure and function of the mouthparts in larvae of Haplothrips verbasci (Osborn) (Thysanoptera, Tubulifera, Phlaeothripidae). Journal of Morphology, 156(1), 1–37.

    Google Scholar 

  • Hinke, W. (1961). Das relative postembryonale wachstum der hirnteile von Culex pipiens, Drosophila melanogaster und Drosophila-mutanten. Zeitschrift fuer Morphologie und Oekologie der Tiere, 50(1), 81–118.

    Article  Google Scholar 

  • Horridge, G. A. (1956). The flight of very small insects. Nature, 178, 1334–1335.

    Article  Google Scholar 

  • Hustert, R. (2012). Giant and dwarf axons in a miniature insect, Encarsia formosa (Hymenoptera, Calcididae). Arthropod Structure & Development, 41(6), 535–543.

    Article  Google Scholar 

  • Ivanov, V. P. (2000). Opгaны чyвcтв нaceкoмыx и дpyгиx члeниcтoнoгиx. Moskva: Nauka.

    Google Scholar 

  • Ivanova-Kazas, O. M. (1961). Oчepки пo cpaвнитeльнoй эмбpиoлoгии пepeпoнчaтoкpылыx (Essays on the comparative embryology of Hymenoptera). Leningrad: Leningrad Univ. Press.

    Google Scholar 

  • Jackson, D. J. (1961). Observations on the biology of Caraphractus cinctus Walker (Hymenoptera, Mymaridae), a parasitoid of the eggs of Dytiscidae. II. Immature stages and seasonal history with a review of mymarid larvae. Parasitology, 51, 269–294.

    Article  Google Scholar 

  • Jałoszyński, P., Hünefeld, F., & Beutel, R. G. (2012). The evolution of “deformed” brains in ant-like stone beetles (Scydmaeninae, Staphylinidae). Arthropod Structure & Development, 41(1), 17–28.

    Google Scholar 

  • Jałoszyński, P., & Olszanowski, Z. (2013). Specialized feeding of Euconnus pubicollis (Coleoptera: Staphylinidae, Scydmaeninae) on oribatid mites: Prey preferences and hunting behaviour. European Journal of Entomology, 110(2), 339–353.

    Article  Google Scholar 

  • Jałoszyński, P., & Olszanowski, Z. (2015). Feeding of Scydmaenus rufus (Coleoptera: Staphylinidae, Scydmaeninae) on oribatid and uropodine mites: Prey preferences and hunting behaviour. European Journal of Entomology, 112(1), 151–164.

    Google Scholar 

  • Jałoszyński, P., & Olszanowski, Z. (2016). Feeding of two species of Scydmaeninae ‘hole scrapers’, Cephennium majus and C. ruthenum (Coleoptera: Staphylinidae), on oribatid mites. European Journal of Entomology, 113, 372–386.

    Article  Google Scholar 

  • Korschelt, E. (1923). Der Gelbrandkäfer Dytiscus marginalis. Bearbeitung einheimischer Tiere, 2, 1–863.

    Google Scholar 

  • Kurylas, A. E., Rohlfi, T., Krofczik, S., Jenett, A., & Homberg, U. (2008). Standardized atlas of the brain of the desert locust, Schistocerca gregaria. Cell and Tissue Research, 333, 125–145.

    Article  PubMed  Google Scholar 

  • Land, M. F., & Nilsson, D.-E. (2012). Animal eyes (2nd ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Linders, E. G. A., Turin, H., & Bruggemann, C. G. (1995). Biology of the weevil Trichosirocalus troglodytes and impact on its host Plantago lanceolata. Acta Oecologica, 16(6), 703–718.

    Google Scholar 

  • Makarova, A. A., Polilov, A. A., & Fisher, S. (2015). Comparative morphological analysis of compound eye miniaturization in minute Hymenoptera. Arthropod Structure & Development, 44(1), 21–32.

    Article  Google Scholar 

  • Matsuda, R. (1965). Morphology and evolution of the insect head. Memoirs of the American Entomological Institute, 4, 1–334.

    Google Scholar 

  • Matsuda, R. (1970). Morphology and evolution of the insect thorax. Memoirs of the Entomological Society of Canada, Suppl 76, 431.

    Google Scholar 

  • Matsuda, R. (1976). Morphology and evolution of the insect abdomen. New York: Pergamon.

    Google Scholar 

  • Meinertzhagen, I. A. (2010). The organisation of invertebrate brains: cells, synapses and circuits. Acta Zoologica Stockholm, 91(1), 64–71.

    Article  Google Scholar 

  • Menzel, R. (1972). The fine structure of the compound eye of Formica polyctena — Functional morphology of a hymenopteran eye. In R. Wehner (Ed.), Information Processing in Visual Systems of Arthropods (pp. 37–47). Berlin: Springer.

    Google Scholar 

  • Morphbank. (2014). Biological imaging. Florida State University, Department of Scientific Computing, Tallahassee, http://www.morphbank.net. Accessed 2014, November 20.

  • Muda, A. R. B., Tugwell, N. P., & Haizlip, M. B. (1981). Seasonal history and indirect flight muscle degeneration and regeneration in the rice water weevil. Environmental Entomology, 10(5), 685–690.

    Article  Google Scholar 

  • Niven, J. E., Anderson, J. C., & Laughlin, S. B. (2007). Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biology, 5(4), e116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.

    Google Scholar 

  • Niven, J. E., Graham, C. M., & Burrows, M. (2008). Diversity and evolution of the insect ventral nerve cord. Annual Review of Entomology, 53, 253–271.

    Google Scholar 

  • Oliva, A. (2012). The Antennal Sensilla of Oxelytrum erythrurum (Blanchard) and Oxelytrum apicale (Brullé) (Coleoptera: Silphidae). Neotropical Entomology, 41(5), 395–403.

    Article  PubMed  Google Scholar 

  • Onagbola, E. O., & Fadamiro, H. Y. (2008). Scanning electron microscopy studies of antennal sensilla of Pteromalus cerealellae (Hymenoptera: Pteromalidae). Micron, 39, 526–535.

    Article  PubMed  Google Scholar 

  • Osswald, J., Pohl, H., & Beutel, R. G. (2010). Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera). Arthropod Structure & Development, 39(4), 287–304.

    Article  Google Scholar 

  • Panov, A. A. (1957). Cтpoeниe гoлoвнoгo мoзгa нaceкoмыx нa пocлeдoвaтeльныx этaпax пocтэмбpиoнaльнoгo paзвития (Structure of the insect cerebrum at consecutive stages of postembrynic development). Entomologiceskoe Obozrenie, 36(2), 269–284.

    Google Scholar 

  • Panov, A. A. (1959). O фopмиpoвaнии глoмepyляpнoй cтpyктypы нeйpoпиля oбoнятeльнoй дoли мoзгa нaceкoмыx (On the formation of glomerular structure of the neuropil of the olfactory lobe of the insect cerebrum). Zoologicheskii Zhurnal, 38(5), 775–777.

    Google Scholar 

  • Panov, A. A. (1960a). Cтpoeниe гoлoвнoгo мoзгa нaceкoмыx нa пocлeдoвaтeльныx этaпax пocтэмбpиoнaльнoгo paзвития: 2. Цeнтpaльнoe тeлo (Structure of the cerebrum at consecutive stages of postembryonic development: 2. Central body). Entomologiceskoe Obozrenie, 38(2), 86–105.

    Google Scholar 

  • Panov, A. A. (1960b). Cтpoeниe гoлoвнoгo мoзгa нaceкoмыx нa пocлeдoвaтeльныx этaпax пocтэмбpиoнaльнoгo paзвития: 3. Зpитeльныe дoли (Structure of the cerebrum at consecutive stages of postembryonic development: 3. Optic lobes). Entomologiceskoe Obozrenie, 39(1), 86–105.

    Google Scholar 

  • Panov, A. A. (1961). Cтpoeниe гoлoвнoгo мoзгa нaceкoмыx нa пocлeдoвaтeльныx этaпax пocтэмбpиoнaльнoгo paзвития: 4. Oбoнятeльный цeнтp (Structure of the cerebrum in insects at consecutive stages of postembryonic development: 4. Olfactory center). Entomologiceskoe Obozrenie, 40(2), 259–271.

    Google Scholar 

  • Parenti, L. R. (1986a). Bilateral asymmetry in phallostethid fishes (Atherinomorpha) with description of a new species from Sarawak. Proceedings of the California Academy of Sciences, 44, 225–236.

    Google Scholar 

  • Parenti, L. R. (1986b). Homology of pelvic fin structures in female phallostethid fishes (Atherinomorpha, Phallostethidae) (pp. 305–310). Copeia.

    Google Scholar 

  • Perrelet, A. (1970). The fine structure of the retina of the honey bee drone. An electron microscopial study. Z Zellforsch, 108, 530–562.

    Article  CAS  PubMed  Google Scholar 

  • Platel, R. (1976). Analyse volumetrique compaire des principales subdividions enciphaliques chez les reptiles sauriens. Journal fur Hirnforschung, 17, 513–537.

    CAS  PubMed  Google Scholar 

  • Plotnikova, S. I. (1979). Cтpyктypнaя opгaнизaция цeнтpaльнoй нepвнoй cиcтeмы нaceкoмыx (Structural organization of the central nervous system of insects). Leningrad: Nauka.

    Google Scholar 

  • Pohl, H. (2000). Die Primärlarven der Fächerflügler – evolutionäre Trends (Insecta, Strepsiptera). Kaupia, 10, 1–144.

    Google Scholar 

  • Polilov, A. A. (2005). Anatomy of the feather-winged beetles Acrotrichis montandoni and Ptilium myrmecophilum (Coleoptera, Ptiliidae). Entomological Review, 85(5), 467–475.

    Google Scholar 

  • Polilov, A. A. (2011). Thoracic musculature of Sericoderus lateralis (Coleoptera, Corylophidae): Miniaturization effects and flight muscle degeneration related to development of reproductive system. Entomological Review, 91(6), 735–742.

    Article  Google Scholar 

  • Polilov, A. A. (2014). Mopфoлoгичecкиe ocoбeннocти мeльчaйшиx нaceкoмыx (Morphological features of the smallest insects). Doctor Dissertation, Lomonosov Moscow State University.

    Google Scholar 

  • Polilov, A. A. (2015a). Small is beautiful: features of the smallest insects and limits to miniaturization. Annual Review of Entomology, 60, 103–121.

    Article  CAS  PubMed  Google Scholar 

  • Polilov, A. A. (2015b). Consequences of Miniaturization in Insect Morphology. Moscow University Biological Sciences Bulletin, 70(3), 136–142.

    Article  Google Scholar 

  • Quesada, R., Triana, E., Vargas, G., Douglass, J. K., Seid, M. A., Niven, J. E., et al. (2011). The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Structure & Development, 40(6), 521–529.

    Article  Google Scholar 

  • Rankin, M. A., Hampton, E. N., & Summy, R. R. (1994). Investigations of the oogenesis-flight syndrome in Anthonomus grandis (Coleoptera: Curculionidae) using tethered flight tests. Journal of Insect Behavior, 7(6), 798–810.

    Article  Google Scholar 

  • Rasnitsyn, A. P. (1980). Пpoиcxoждeниe и эвoлюция пepeпoнчaтoкpылыx нaceкoмыx (Origin and evolution of hymenoptera). Trudy Paleontologicheskogo instituta Akademii nauk SSSR, 174, 1–192.

    Google Scholar 

  • Reid, R. W. (1958). Internal changes in the female mountain pine beetle Dendroctonus monticolae Hopk. associated with egg laying and flight. Canadian Entomologist, 90(8), 464–468.

    Article  Google Scholar 

  • Rein, K., Zöckler, M., Mader, M. T., Grübel, C., & Heisenberg, M. (2002). The Drosophila standard. Current Biology, 12, 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Rensch, B. (1948). Histological changes correlated with evolutionary changes in body size. Evolution, 2, 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Rohlfi, T., Brandt, R., Menzel, R., & Maurer, C. R., Jr. (2004). Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. Neuroimage, 21(4), 1428–1442.

    Article  Google Scholar 

  • Ruppel, H. (1953). Physiologische untersuchungen über die bedeutung des ventraltubus und die atmung der collembolen. Zoologische Jahrbucher, 64, 429–469.

    Google Scholar 

  • Schmalhausen, I. I. (1984). Pocт и диффepeнциpoвкa (Growth and Differentiation). Kiev: Naukova dumka.

    Google Scholar 

  • Silvere AP, Shtein-Margolina VV (1976) Tetrapodili — чeтыpexнoгиe клeщи: Элeктpoннoмикpocкoпичecкaя aнaтoмия, пpoблeмы эвoлюции и взaимooтнoшeния c вoзбyдитeлями бoлeзнeй pacтeний (Tetrapodili: Fore-legs mites; Electron microscopic anatomy, evolution problems and mutual relations with plant pathogenic organisms) Tallinn: Valgus.

    Google Scholar 

  • Sinitsyna, E. E., & Chaika, S Yu. (2006). Aтлac элeктpoнo-микpocкoпичecкoй мopфoлoгии xeмopeцeптopныx opгaнoв нaceкoмыx (Atlas of electron-microscopic morphology of chemoreceptor organs of insects). Moscow: Tipografiya Rossel’hozakademii.

    Google Scholar 

  • Skilbeck, C. A., & Anderson, M. (1996). The ultrastructure, morphology and distribution of sensilla on the antennae of the adult parasitoids Aleochara bilineata gyll. and Aleochara bipustulata L. (Coleoptera: staphylinidae). International Journal of Insect Morphology and Embryology, 25(3), 261–280.

    Article  Google Scholar 

  • Sotnikov, O. S., Laktionova, A. A., Solovieva, I. A., & Krasnova, T. V. (2010). Neuron division or enucleation. Neuroscience and Behavioral Physiology, 40, 841–847.

    Article  CAS  PubMed  Google Scholar 

  • Stegwee, D., Kimmel, E. C., De Boer, J. A., & Henstra, S. (1963). Hormonal control of reversible degeneration of flight muscle in the colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera). Journal of Cell Biology, 19, 519–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan, H., Bauchot, R., & Andy, O. J. (1970). Data on the size of the brain and of various parts in insectivores and primates. In C. R. Noback & W. Montagna (Eds.), The primate brain (pp. 289–297). NY: Appleton-Century-Crofts.

    Google Scholar 

  • Stephan, H., Frahm, H., & Baron, G. (1981). New and revised data on volumes of brain structure in insectivores and primates. Folia Primatologica, 35, 1–29.

    Article  CAS  Google Scholar 

  • Stephan, H., Baron, G., Frahm, H. (1988). Comparative size of brain and brain components. In J. Erwin & H. D. Steklis (Eds.), Comparative primate biology (Vol 4, pp. 1–38). Alan R. Liss, NY.

    Google Scholar 

  • Strausfeld, N. J. (1976). Atlas of an insect brain. NY: Springer.

    Book  Google Scholar 

  • Svidersky, V. L. (1980a). Ocнoвы нeйpoфизиoлoгии нaceкoмыx (Fundamentals of insect neurophysiology). Leningrad: Nauka.

    Google Scholar 

  • Svidersky, V. L. (1980b). Пoлeт нaceкoмoгo (Insect flight). Moscow: Nauka.

    Google Scholar 

  • Symonds, M. R. E., & Elgar, M. A. (2013). The evolution of body size, antennal size and host use in parasitoid wasps (Hymenoptera: Chalcidoidea): A phylogenetic comparative analysis. PLoS ONE, 8(10), e78297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada, S., Yamamoto, A., & Nishigaki, J. (1991). Flight-muscle dimorphism of female-adults in the yellowish elongate chafer, Heptophylla picea Motschulsky (Coleoptera, Scarabaeidae). Applied Entomology and Zoology, 26, 515–521.

    Google Scholar 

  • van Baaren, J., Boivin, G., & Le, Lannic J. (1999). Nénon J-P (1999), Comparison of antennal sensilla of Anaphes victus and A. listronoti (Hymenoptera, Mymaridae), egg parasitoids of Curculionidae. Zoomorphology, 119(1), 1–8.

    Article  Google Scholar 

  • Walker, J. A. (2002). Functional morphology and virtual models: Physical constraints on the design of oscillating wings, fins, legs, and feet at intermediate Reynolds numbers. Integrative and Comparative Biology, 42, 232–242.

    Article  PubMed  Google Scholar 

  • Warrant, E. J., & McIntyre, P. D. (1993). Arthropod eye design and the physical limits to spatial resolving power. Progress in Neurobiology, 40, 413–461.

    Article  CAS  PubMed  Google Scholar 

  • Warrant, E. J., & Nilsson, D. E. (1998). Absorption of white light in photoreceptors. Vision Research, 38, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Wegerhoff, R., & Breidbach, O. (1992). Die entwicklung des zentral komplexes beim käfer. studie zur ontogenie eines zentralen hirnbereiches. Verhandlungen der Deutschen Zoologischen Gesellschaft, 85, 1–92.

    Google Scholar 

  • Weis-Fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology, 59(1), 169–230.

    Google Scholar 

  • Westheide, W., & Rieger, (2004). Spezielle Zoologie. Berlin: Spektrum Akademischer Verlag Heidelberg.

    Google Scholar 

  • Wigglesworth, V. B. (1953). The principles of insect physiology. London: E. P. Dutton.

    Google Scholar 

  • Will, K. W., Liebherr, J. K., Maddison, D. R., & Galin, J. (2005). Absence asymmetry: The evolution of monorchid beetles (Insecta: Coleoptera: Carabidae). Journal of Morphology, 264(1), 75–93.

    Article  PubMed  Google Scholar 

  • Zhang, S., Zhang, Z., Kong, X., Wang, H., Zhou, G., & Yu, J. (2012). External morphology of Trichogramma dendrolimi Matsumura (Hymenoptera: Trichogrammatidae) organ and ultrastructure of the sensilla. Microscopy Research and Technique, 75(11), 1513–1521.

    Article  PubMed  Google Scholar 

  • Zhou, H., Wu, W. J., Zhang, F. P., & Fu, Y. G. (2013). Scanning Electron Microscopy Studies of the Antennal Sensilla of Metaphycus parasaissetiae Zhang & Huang (Hymenoptera: Encyrtidae). Neotropical Entomology, 42(3), 278–287.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Polilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polilov, A.A. (2016). Peculiar Miniature-Related Structural Features of Different Organ Systems of Insects. In: At the Size Limit - Effects of Miniaturization in Insects. Springer, Cham. https://doi.org/10.1007/978-3-319-39499-2_9

Download citation

Publish with us

Policies and ethics