Skip to main content

Limits to Insect Miniaturization

  • Chapter
  • First Online:
At the Size Limit - Effects of Miniaturization in Insects
  • 905 Accesses

Abstract

Limiting factors of decrease in body size is of considerable theoretical interest to general biology. Two hypotheses have been put forward on the structural factors that limit miniaturization in insects. The first hypothesis refers to all insects: minimum body size is limited by increasing the relative volume of the central nervous system, which, in turn, is limited by the conserved structure and ultrastructure, by the number and size of neurons, and by the minimum diameter of projections. The second hypothesis is true only for free-living insects: their size diminution is limited by egg size, and therefore by the volume of the reproductive system. Since the smallest insects are among the smallest metazoans and have the most complex organization among members of their size class, the factors that limit their minimum size are important for understanding the limits to miniaturization in animals in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashe, J. S., & Newton, A. F. (1993). Larvae of Trichophya and phylogeny of the tachyporine group of subfamilies (Coleoptera: Staphylinidae) with a review, new species and characterization of the Trichophyinae. Systematic Entomology, 18, 267–286.

    Article  Google Scholar 

  • Balduf, W. V. (1928). Observations on the buffalo tree-hopper Ceresa bubalus Fabr. (Membracidae, Homoptera) and the bionomics of an egg parasite, Polynema striaticorne Girault (Mymaridae, Hymenoptera). Annals of the Entomological Society of America, 21(3), 419–435.

    Article  Google Scholar 

  • Betz, O., & Fuhrmann, S. (2001). Life history traits in different life forms of predaceous Stenus beetles Coleoptera, Staphylinidae, living in waterside environments. Netherlands Journal of Zoology, 51(4), 371–393.

    Article  Google Scholar 

  • Beutel, R. G., & Haas, A. (1998). Larval head morphology of Hydroscapha natans LeConte 1874 (Coleoptera, Myxophaga, Hydroscaphidae) with special reference to miniaturization. Zoomorphology, 118(2), 103–116.

    Article  Google Scholar 

  • Beutel, R. G., Pohl, H., & Hunefeld, F. (2005). Strepsipteran brain and effect of miniaturization (Insecta). Arthropod Structure & Development, 34(3), 301–313.

    Article  Google Scholar 

  • Boivin, G., Picard, C., & Auclair, J. L. (1993). Preimaginal development of Anaphes n.sp. (Hymenoptera: Mymaridae), an egg parasitoid of the carrot weevil (Coleoptera: Curculionidae). Biological Control, 3(3), 176–181.

    Google Scholar 

  • Chittka, L., & Niven, J. (2009). Are bigger brains better? Current Biology, 19, R995–R1008.

    Article  CAS  PubMed  Google Scholar 

  • Dahlan, A. N., & Gordh, G. (1996). Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) on Helicoverpa armigera (Hübner) eggs (Lepidoptera: Noctuidae). Australian Journal of Entomology, 35, 337–344.

    Article  Google Scholar 

  • De Coninck, E., & Coessens, R. (1981). Life cycle and reproductive pattern of Acrotrichis intermedia (Coleoptera: Ptiliidae) in experimental conditions. Journal of Natural History, 15(6), 1047–1055.

    Article  Google Scholar 

  • DeSalle, R., Gregory, T. R., & Johnston, J. S. (2005). Preparation of samples for comparative studies of arthropod chromosomes: visualization, in situ hybridization, and genome size estimation. Methods in Enzymology, 395, 460–488.

    Article  CAS  PubMed  Google Scholar 

  • Dybas, H. S. (1966). Evidence for parthenogenesis in the featherwing beetles, with a taxonomic review of a new genus and eight new species (Coleoptera: Ptiliidae). Fieldiana Zoology, 51, 11–52.

    Google Scholar 

  • Eberhard, W. G. (2011). Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders. Animal Behaviour, 81, 813–823.

    Article  Google Scholar 

  • Eberhard, W. G., & Wcislo, W. T. (2011). Grade changes in brain–body allometry: Morphological and behavioural correlates of brain size in miniature spiders, insects and other invertebrates. Advances in Insect Physiology, 40, 155–214.

    Article  Google Scholar 

  • Faisal, A. A., White, J. A., & Laughlin, S. B. (2005). Channel noise places limits on the miniaturization of the brain’s wiring. Current Biology, 12(12), 1143–1149.

    Article  Google Scholar 

  • Ferrari, J. A., & Rai, K. S. (1989). Phenotypic correlates of genome size variation in Aedes albopictus. Evolution, 43, 895–899.

    Article  Google Scholar 

  • Finston, T. L., Hebert, P. D. N., & Foottit, R. (1995). Genome size variation in aphids. Insect Biochemistry and Molecular Biology, 25, 189–196.

    Article  CAS  Google Scholar 

  • Fischer, S., Müller, C. H. G., & Meyer-Rochow, V. B. (2011). How small can small be: the compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size. Visual Neuroscience, 28(4), 295–308.

    Article  PubMed  Google Scholar 

  • García-Barros, E. (2000). Body size, egg size, and their interspecific relationship with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidae). Biological Journal of the Linnean Society, 70, 251–284.

    Article  Google Scholar 

  • García-Barros, E. (2002). Taxonomic patterns in the egg to body size allometry of butterflies and skippers (Papilionoidea & Hesperiidae). Nota Lepidopterologica, 25(2/3), 161–75.

    Google Scholar 

  • Goossen, H. (1949). Untersuchungen an gehirnen verschieden grosser, jeweils verwandter Coleopteren- und Hymenopteren. Arten Zoologische Jahrbücher Abteilung fuer Allgemeine Zoologie, 62, 1–64.

    Google Scholar 

  • Gregory, T. R. (2001). Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews, 76, 65–101.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, T. R., Hebert, P. D. N., & Kolasa, J. (2000). Evolutionary implications of the ralationship between genome size and body size in flatworms and copepods. Heredity, 84, 201–208.

    Article  PubMed  Google Scholar 

  • Heraty, J., Hawks, D., Kostecki, J. S., & Carmichael, A. (2004). Phylogeny and behaviour of the Gollumiellinae, a new subfamily of the ant-parasitic Eucharitidae (Hymenoptera: Chalcidoidea). Systematic Entomology, 29(4), 544–559.

    Article  Google Scholar 

  • Hesami, S., Seyedoleslami, H., & Ebadi, R. (2004). Biology of Anagrus atomus (Hymenoptera: Mymaridae), an egg parasitoid of the grape leafhopper Arboridia kermanshah (Homoptera: Cicadellidae). Entomological Science, 7(3), 271–276.

    Article  Google Scholar 

  • Hustert, R. (2012). Giant and dwarf axons in a miniature insect, Encarsia formosa (Hymenoptera, Calcididae). Arthropod Structure & Development, 41(6), 535–543.

    Article  Google Scholar 

  • Irvin, N. A., & Hoddle, M. S. (2009). Egg maturation, oosorption, and wing wear in Gonatocerus ashmeadi (Hymenoptera: Mymaridae), an egg parasitoid of the glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). Biological Control, 48(2), 125–132.

    Article  Google Scholar 

  • Ivanova-Kazas, O. M. (1961). Oчepки пo cpaвнитeльнoй эмбpиoлoгии пepeпoнчaтoкpылыx (Essays on the comparative embryology of Hymenoptera). Leningrad: Leningrad Univ. Press.

    Google Scholar 

  • Kaas, J. H. (2000). Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain and Mind, 1(1), 7–23.

    Article  Google Scholar 

  • Land, M. F., & Nilsson, D.-E. (2012). Animal eyes (2nd ed.). Oxford: Oxford University Press.

    Book  Google Scholar 

  • Leschen, R. A. B. (1988). The natural history and immatures of Scaphisoma punctatum (Coleoptera: Scaphidiidae). Entomological News, 99, 225–232.

    Google Scholar 

  • Makarova, A. A., & Polilov, A. A. (2013a). Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae). Entomological Review, 93(6), 703–713.

    Google Scholar 

  • Makarova, A. A., & Polilov, A. A. (2013b). Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 2. The smallest Hymenoptera (Mymaridae, Trichogrammatidae). Entomological Review, 93(6), 714–724.

    Google Scholar 

  • Makarova, A. A., Polilov, A. A., & Fisher, S. (2015). Comparative morphological analysis of compound eye miniaturization in minute Hymenoptera. Arthropod Structure & Development, 44(1), 21–32.

    Article  Google Scholar 

  • Mares, S., Ash, L., & Gronenberg, W. (2005). Brain allometry in bumblebee and honeybee workers. Brain, Behavior and Evolution, 66, 50–61.

    Article  PubMed  Google Scholar 

  • Martini, E. (1912). Studien über die Konstanz histologischer Elemente. III. Hydatina senta. Zeitschrift für wissenschaftliche Zoologie, 102, 425–645.

    Google Scholar 

  • Meinertzhagen, I. A. (2010). The organisation of invertebrate brains: cells, synapses and circuits. Acta Zoologica Stockholm, 91(1), 64–71.

    Article  Google Scholar 

  • Mockford, E. L. (1997). A new species of Dicopomorpha (Hymenoptera: Mymaridae) with diminutive, apterous males. Annals of the Entomological Society of America, 90(2), 115–120.

    Article  Google Scholar 

  • Niven, J. E., Anderson, J. C., & Laughlin, S. B. (2007). Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biology, 5(4), e116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211, 1792–1804.

    Article  CAS  PubMed  Google Scholar 

  • Novotny, V., & Wilson, M. R. (1997). Why are there no small species among xylem-sucking insects? Evolutionary Ecology, 11(4), 419–437.

    Article  Google Scholar 

  • Pietrykowska-Tudruj, E. (2009). Staniec B (2009) The egg and mature larva of Anotylus insecatus (Gravenhorst, 1806) (Coleoptera: Staphylinidae). Genus, 20(2), 209–223.

    Google Scholar 

  • Polilov, A. A. (2005). Anatomy of the feather-winged beetles Acrotrichis montandoni and Ptilium myrmecophilum (Coleoptera, Ptiliidae). Entomological Review, 85(5), 467–475.

    Google Scholar 

  • Polilov, A. A. (2007). Mopфoлoгичecкиe ocoбeннocти Mymaridae cвязaнныe c миниaтюpизaциeй (Miniaturization-related structural features of Mymaridae). Studies on hymenopterous insects: Collection of scientific papers (pp. 50–64). Moscow: KMK.

    Google Scholar 

  • Polilov, A. A. (2008). Anatomy of the smallest of the Coleoptera, feather-winged beetles from tribe Nanosellini (Coleoptera, Ptiliidae) and limits to insect miniaturization. Entomological Review, 88(1), 26–33.

    Article  Google Scholar 

  • Polilov, A. A. (2014). Mopфoлoгичecкиe ocoбeннocти мeльчaйшиx нaceкoмыx (Morphological features of the smallest insects). Doctor Dissertation, Lomonosov Moscow State University.

    Google Scholar 

  • Polilov, A. A. (2015). Small is beautiful: Features of the smallest insects and limits to miniaturization. Annual Review of Entomology, 60, 103–121.

    Article  CAS  PubMed  Google Scholar 

  • Polilov, A. A., & Beutel, R. G. (2009). Miniaturization effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. Arthropod Structure & Development, 38(3), 247–270.

    Article  Google Scholar 

  • Polilov, A. A., & Beutel, R. G. (2010). Developmental stages of the hooded beetle Sericoderus lateralis (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of miniaturization. Arthropod Structure & Development, 39(1), 52–69.

    Google Scholar 

  • Quesada, R., Triana, E., Vargas, G., Douglass, J. K., Seid, M. A., Niven, J. E., et al. (2011). The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Structure & Development, 40(6), 521–529.

    Article  Google Scholar 

  • Rensch, B. (1947). Neuere Probleme der Abstammungslehre: Die transspezifische Evolution. Stuttgart: Ferdinand Enke.

    Google Scholar 

  • Rensch, B. (1948). Histological changes correlated with evolutionary changes in body size. Evolution, 2, 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Riveros, A. J., & Gronenberg, W. (2010). Brain allometry and neural plasticity in the bumblebee Bombus terrestris. Brain, Behavior and Evolution, 75, 138–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saakyan-Baranova, A. A. (1990). Mopфoлoгичecкoe иccлeдoвaниe пpeимaгинaльныx cтaдий paзвития шecти видoв poдa Trichogramma Westwood (Hymenoptera, Trichogrammatidae) (Morphological study of pre-adult stages of development in six species of the genus Trichogramma Westwood (Hymenoptera, Trichogrammatidae)). Entomologiceskoe Obozrenie, 69(2), 257–263.

    Google Scholar 

  • Sahad, K. A. (1982). Biology and morphology of Gonatocerus sp. (Hymenoptera, Mymaridae), an egg parsasitoid of the green rice leafhopper, Nephotettix cincticeps Uhler (Homoptera, Deltocephalidae). II. Morphology. Kontyu, 50(3), 467–476, Tokyo.

    Google Scholar 

  • Sahad, K. A. (1984). Biology of Anagrus optabilis (Perkins) (Hymenoptera, Mymaridae), and egg parasitoid of delphacid planthoppers. Esakia, 22, 129–144.

    Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important?. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  • Seid, M. A., Castillo, A., & Wcislo, W. T. (2011). The allometry of brain miniaturization in ants. Brain, Behavior and Evolution, 77(1), 5–13.

    Article  PubMed  Google Scholar 

  • Snodgrass, R. E. (1926). The morphology of insect sense organs and the sensory nervous system. Smithsonian Miscellaneous Collections, 77(8), 1–80.

    Google Scholar 

  • Staniec, B. (2003). Developmental stages of Platystethus nitens (C. Sahlberg, 1832) (Coleoptera; Staphylinidae). Genus, 14, 345–355.

    Google Scholar 

  • Staniec, B., & Pietrykowska-Tudruj, E. (2008). Morphology of developmental stages of Philonthus fumarius (GravEnhorst, 1806) (Coleoptera, Staphylinidae) with notes on biology. Acta Zoologica Academiae Scientiarum Hungaricae, 54(3), 213–234.

    Google Scholar 

  • Staniec, B., & Pietrykowska-Tudruj, E. (2009). Immature stages of Rabigus tenuis (FaBricius, 1792) (Coleoptera, Staphylinidae, Staphylininae) with observation on its biology and taksonomic comments. The Belgian Journal of Zoology, 138(1), 22–39.

    Google Scholar 

  • Torrens, J., & Heraty, J. M. (2013). A new genus of Eucharitidae (Hymenoptera: Chalcidoidea), with notes on life history and immature stages. Zootaxa, 3630(2), 347–358.

    Article  PubMed  Google Scholar 

  • Vu Kuang Kon. (1974). Mopфoлoгичecкиe и биoлoгичecкиe ocoбeннocти пpeимaгинaльныx фaз и cтaдий paзвития Encyrtus infidus Rossi (Hymenoptera, Chalcidoidea) – пapaзитa кapaгaнoвoй лoжнoщитoвки (Eulecanium caraganae Borchs.) (Peculiar morphological and biological features of preadult phases and sgages of deelopment in Encyrtus infidus Rossi (Hymenoptera, Chalcidoidea), parasite of the caragana scale (Eulecanium caraganae Borchs.)). Entomologiceskoe Obozrenie, 53(4), 732–751.

    Google Scholar 

  • Warrant, E. J., & McIntyre, P. D. (1993). Arthropod eye design and the physical limits to spatial resolving power. Progress in Neurobiology, 40, 413–461.

    Article  CAS  PubMed  Google Scholar 

  • Warrant, E. J., & Nilsson, D. E. (1998). Absorption of white light in photoreceptors. Vision Research, 38, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Wehner, R. T., Fukushi, T., & Isler, K. (2007). On being small: Brain allometry in ants. Brain, Behavior and Evolution, 69, 220–228.

    Article  PubMed  Google Scholar 

  • White, J. (1988). The anatomy. In W. B. Wood (Ed.), The nematode C. elegans (pp. 81–122). NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Woude, E., Smid, H. M., Chittka, L., & Huigens, M. E. (2013). Breaking Haller’s rule: Brain-body size isometry in a minute parasitic wasp. Brain, Behavior and Evolution, 81(2), 86–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Polilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polilov, A.A. (2016). Limits to Insect Miniaturization. In: At the Size Limit - Effects of Miniaturization in Insects. Springer, Cham. https://doi.org/10.1007/978-3-319-39499-2_13

Download citation

Publish with us

Policies and ethics