Skip to main content

Analysis of Peculiar Miniaturization-Related Structural Features in Different Groups of Animals

  • Chapter
  • First Online:
At the Size Limit - Effects of Miniaturization in Insects
  • 882 Accesses

Abstract

Miniaturization is a widespread evolutionary trend; miniature forms occur in many groups of animals. Morphological features related to the diminution of body size can be very different in different groups of animals and include both features shared by all animals and unique features of particular animal species. In this chapter, the consequences of miniaturization in different groups of insects are analyzed and compared with those found in other miniature animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bellinger, P. F., Christiansen, K. A., & Janssens, F. (1996–2013). Checklist of the Collembola of the world. http://www.collembola.org. Accessed 2014, February 05.

  • Boxshall, G. A. (1982). On the anatomy of the misophirioid copepods, with special reference to Benthomisophria palliata Sars. Philosophical Transactions of the Royal Society B, 297(1086), 125–181.

    Article  Google Scholar 

  • Boxshall, G., & Huys, R. (1989). New tantulocarid, Stygotantulus stocki, parasitic on harpacticoid copepods, with an analysis of the phylogenetic relationships within the Maxillopoda. Journal of Crustacean Biology, 91(1), 126–140.

    Article  Google Scholar 

  • Brenzinger, B., Haszprunar, G., & Schrodl, M. (2013). At the limits of a successful body plan—3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod. Frontiers in Zoology, 10(1), 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh, N. K., & Chakrabarti, S. (1987). A new genus and three new species of eriophyid mites (Acarina: Eriophyoidea) from West Bengal India. Entomon, 12, 49–54.

    Google Scholar 

  • Gorodkov, K. B. (1984). Oлигoмepизaция и эвoлюция cиcтeм мopфoлoгичecкиx cтpyктyp: 2. Oлигoмepизaция и yмeньшeниe paзмepoв тeлa (Oligomerization and evolution of the morphological structure systems. 2. Oligomerization and body size decrease. Zoologicheskii Zhurnal, 63, 1765–1778.

    Google Scholar 

  • Griffith, H. (1990). Miniaturization and elongation in Eumeces (Sauria: Scincidae). Copeia, 1990(3), 751–758.

    Article  Google Scholar 

  • Hanken, J. (1982). Appendicular skeletal morphology in minute salamanders, genus Thorius (Amphibia: Plethodontidae): growth regulation, adult size determination, and natural variation. Journal of Morphology, 174(1), 57–77.

    Article  Google Scholar 

  • Hanken, J. (1983). Miniaturization and its effect on cranial morphology in Plethodontid Salamanders, genus Thorius (Amphibia, Plethodontidae): The fate of the brain and sense organs and their role in skull morphogenesis and evolution. Journal of Morphology, 177(3), 255–268.

    Article  CAS  PubMed  Google Scholar 

  • Hanken, J. (1985). Morphological novelty in the limb skeleton accompanies miniaturization in Salamanders. Science, 229(4716), 871–874.

    Article  CAS  PubMed  Google Scholar 

  • Hanken, J., & Wake, D. B. (1993). Miniaturization of body size: organismal consequences and evolutionary significance. Annual Reviews of Ecology and Systematics, 24, 501–519.

    Article  Google Scholar 

  • Kaas, J. H. (2000). Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain and Mind, 1(1), 7–23.

    Article  Google Scholar 

  • Kirsteurer, E. (1972). The interstitial nemertean fauna of marine sand. Smithsonian Contributions to Zoology, 76, 17–19.

    Google Scholar 

  • Kottelat, M., Britz, R., Tan, H. H., & Witte, K. E. (2006). Paedocypris, a new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world’s smallest vertebrate. Proceedings of the Royal Society B, 273(1589), 895–899.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kristensen, R. M. (2002). An introduction to Loricifera, Cycliophora and Micrognathozoa. Integrative and Comparative Biology, 42(3), 641–651.

    Article  PubMed  Google Scholar 

  • Laurin, B., & Garcia-Joral, F. (1990). Miniaturization and heterochrony in Homoeorhynchia meridionalis and H. cynocephala (Brachiopoda, Rhynchonellidae) from the Jurassic of the Iberian range, Spain. Paleobiology, 16(1), 62–76.

    Article  Google Scholar 

  • Linke, R., Roth, G., & Rottluff, B. (1986). Comparative studies on the eye morphology of lungless salamanders, family Plethodontidae, and the effect of miniaturization. Journal of Morphology, 189(2), 131–143.

    Article  Google Scholar 

  • Mahunka, S. (1969). The scientific results of the Hungarian soil zoological expeditions to South America 9. Acari: Pyemotidae and Scutacaridae from the Guayaramerin Region in Bolivia. Acta Zoologica Academiae Scientiarum Hungaricae, 15, 63–90.

    Google Scholar 

  • Mahunka, S. (1976). Äethiopische Tarsonemiden (Acari: Tarsonemida). II. Acta Zoologica Academiae Scientiarum Hungaricae, 22, 69–96.

    Google Scholar 

  • Martini, E. (1912). Studien über die Konstanz histologischer Elemente. III. Hydatina senta. Zeitschrift für wissenschaftliche Zoologie, 102, 425–645.

    Google Scholar 

  • McClain, C. R., & Boyer, A. G. (2009). Biodiversity and body size are linked across metazoans. Proceedings of the Royal Society B, 276(1665), 2209–2215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, P. J. (1979). Adaptiveness and implications of small size in teleosts. Symposia of the Zoological Society of London, 44, 263–306.

    Google Scholar 

  • Mooi, R. (1990). Progenetic miniaturization in the sand dollar Sinaechinocyamus: Implications for clypeasteroid phylogeny. In C. De Ridder, P. Dubois, M.-C. Lahaye, et al. (Eds.), Echinoderm research (pp. 137–143). Rotterdam: Balkema.

    Google Scholar 

  • Myers, G. S., & Bohlke, J. (1956). The Xenurobryconini, a group of minute South American characid fishes with teeth outside the mouth. Stanford Ichthyological Bulletin, 7, 6–12.

    Google Scholar 

  • Noodt, W. (1974). Anpassung an interstitielle Bedingungen: Ein Faktor in der Evolution höherer Taxa der Crustacea. Faunistisch-Ökologische Mitteilungen, 4, 445–452.

    Google Scholar 

  • Perge, J. A., Niven, J. E., Mugnaini, E., Balasubramanian, V., & Sterling, P. (2012). Why do axons differ in caliber? Journal of Neuroscience, 32(2), 626–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrunina, A., & Kolbasov, G. (2012). Morphology and ultrastructure of definitive males of Arcticotantulus pertzovi and Microdajus tchesunovi (Crustacea; Tantulocarida). Zoologischer Anzeiger, 251(3), 223–236.

    Article  Google Scholar 

  • Polilov, A. A. (2015). Small is beautiful: Features of the smallest insects and limits to miniaturization. Annual Review of Entomology, 60, 103–121.

    Article  CAS  PubMed  Google Scholar 

  • Quesada, R., Triana, E., Vargas, G., Douglass, J. K., Seid, M. A., Niven, J. E., et al. (2011). The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. Arthropod Structure & Development, 40(6), 521–529.

    Article  Google Scholar 

  • Rehkamper, G., Schuchmann, K. L., Schleicher, A., & Zilles, K. (1991). Encephalization in hummingbirds (Trochilidae). Brain, Behavior and Evolution, 37, 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Rensch, B. (1948). Histological changes correlated with evolutionary changes in body size. Evolution, 2, 218–230.

    Article  CAS  PubMed  Google Scholar 

  • Rieppel, O. (1984). Miniaturization of the lizard skull: its functional and evolutionary implications. Symposia of the Zoological Society of London, 52, 503–520.

    Google Scholar 

  • Roberts, T. R. (1986). Danionella translucida, a new genus and species of cyprinid fish from Burma, one of the smallest living vertebrates. Environmental Biology of Fishes, 16, 231–241.

    Article  Google Scholar 

  • Roth, G., Blanke, J., & Wake, D. B. (1994). Cell size predicts morphological complexity in the brains of frogs and salamanders. Proceedings of the National Academy of Sciences of the United States of America, 91(11), 4796–4800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth, G., Nishikawa, K. C., & Wake, D. B. (1997). Genome size, secondary simplification, and the evolution of the brain in salamanders. Brain, Behavior and Evolution, 50(1), 50–59.

    Article  CAS  PubMed  Google Scholar 

  • Roth, G., Rotluff, B., Blanke, J., & Ohle, M. (1995). Brain size and morphology in miniaturized plethodontid salamanders. Brain, Behavior and Evolution, 45(2), 84–95.

    Article  CAS  PubMed  Google Scholar 

  • Roth, G., Rotluff, B., Grunwald, W., Hanken, J., & Linke, R. (1990). Miniaturization in plethodontid salamanders (Caudata, Plethodontidae) and its consequences for the brain and visual system. Biological Journal of the Linnean Society, 40(2), 165–190.

    Article  Google Scholar 

  • Roth, G., Rottluff, G., & Linke, R. (1988). Miniaturization, genome size and the origin of functional constraints in the visual system of salamanders. Naturwissenschaften, 75(6), 297–304.

    Article  CAS  PubMed  Google Scholar 

  • Rouse, G. W., Goffredi, S. K., & Vrijenhoek, R. C. (2004). Osedax: bone-eating marine worms with dwarf males. Science, 305(5684), 668–671.

    Article  CAS  PubMed  Google Scholar 

  • Rundell, R. J., & Leander, B. S. (2010). Masters of miniaturization: Convergent evolution among interstitial eukaryotes. BioEssays, 32(5), 430–437.

    Article  PubMed  Google Scholar 

  • Ruppel, H. (1953). Physiologische untersuchungen über die bedeutung des ventraltubus und die atmung der collembolen. Zoologische Jahrbucher, 64, 429–469.

    Google Scholar 

  • Schmidt-Nielsen, K. (1984). Scaling: Why is animal size so important?. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  • Schuchert, P., & Rieger, R. M. (1990). Ultrastructural observations on the dwarf male of Bonellia viridis (Echiura). Acta Zoologica, 71(1), 5–16.

    Article  Google Scholar 

  • Serban, M. (1960). La neotenie et le probleme de la taille chez les Copepodes. Crustaceana, 1, 77–83.

    Article  Google Scholar 

  • Shea, B. T. (1992). Ontogenetic scaling of skeletal proportions in the talapoin monkey. Journal of Human Evolution, 23(3), 283–307.

    Article  Google Scholar 

  • Silvere, A. P., & Shtein-Margolina, V. V. (1976). Tetrapodili — чeтыpexнoгиe клeщи: Элeктpoннoмикpocкoпичecкaя aнaтoмия, пpoблeмы эвoлюции и взaимooтнoшeния c вoзбyдитeлями бoлeзнeй pacтeний (Tetrapodili, four-legs mites: Electron microscopic anatomy, evolution problems, and mutual relations with plant pathogenic organisms). Tallinn: Valgus.

    Google Scholar 

  • Snyder, J., & Bretsky, P. W. (1971). Life habits of diminutive bivalve mollusks in the Maquoketa formation (Upper Ordovician). American Journal of Science, 271(3), 227–251.

    Article  Google Scholar 

  • Spassky, A. A. (1983). Oб ycлoвияx миниaтюpизaции цeпнeй — oднoгo из нaпpaвлeний иx эвoлюции (On the conditions for miniaturization in cyclophyllid cestodes, one of the trends of their evolution). Izvestiye AN Moldavskoi SSR. Seria biologicheskih i chimicheskih nauk, 5, 54–58.

    Google Scholar 

  • Springer, V. G. (1983). Tyson belos, new genus and species of western Pacific fish (Gobiidae, Xenisthminae), with discussions of gobioid osteology and classification. Smithsonian Contributions to Zoology, 390, 1–40.

    Article  Google Scholar 

  • Swedmark, B. (1964). The interstitial fauna of marine sand. Biological Reviews, 39, 1–42.

    Article  Google Scholar 

  • Tchesunov, A., Milutin, D., & Evseev, A. (2000). Mнoгoклeтoчныe пapaзиты пpocтeйшиx (Multicellular parasites of protozoans). Priroda, 3(1015), 6–12.

    Google Scholar 

  • Te Winkel, L. E. (1935). A study of Mistichthys luzonensis wilh special reference to conditions correlated with reduced size. Journal of Morphology, 58(2), 463–535.

    Article  Google Scholar 

  • Turner, R. D., & Yakovlev, Y. (1983). Dwarf males in the Teredinidae (Bivalvia, Pholodacea). Science, 219(4584), 1077–1078.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, J. C. (1970). An especially small, sexually dimorphic new species of filefish (Monacanthidae) from Australasian reefs. Proceedings of the National Academy of Sciences of the United States of America, 122, 273–290.

    Google Scholar 

  • von Hofstein, N. (1909). Rotatorien aus dem Mastermyr (Gottland) und einigen anderen schwedischen Binnengewassern. Arkiv för zoologi, 6, 1–125.

    Google Scholar 

  • Vortsepneva, E., Tzetlin, A., Purschke, G., Mugue, N., Hass-Cordes, E., & Zhadan, A. (2008). The parasitic polychaete known as Asetocalamyzas laonicola (Calamyzidae) is in fact the dwarf male of the spionid Scolelepis laonicola (comb. nov.). Invertebrate Biology, 127(4), 403–416.

    Article  Google Scholar 

  • Wake, M. H. (1986). The morphology of Idiocranium russeli (Amphibia: Gymnophiona), with comments on miniaturization through heterochrony. Journal of Morphology, 189(1), 1–16.

    Article  Google Scholar 

  • Ware, R. A., & LoPresti, V. (1975). Three-dimensional reconstruction from serial sections. International Review of Cytology, 40, 325–440.

    Google Scholar 

  • Westheide, W. (1984). The concept of reproduction in polychaetes with small body size; adaptation in interstitial species. Fortschritte der Zoologie, 29, 265–287.

    Google Scholar 

  • Westheide, W. (1987). Progenesis as a principle in meiofauna evolution. Journal of Natural History, 21(4), 843–854.

    Article  Google Scholar 

  • Westheide, W. (1990). Polychaetes: Linterstitial families. Oegstgeest: Universal Book Services.

    Google Scholar 

  • Westheide, W., & Rieger, (2004). Spezielle Zoologie. Berlin: Spektrum Akademischer Verlag Heidelberg.

    Google Scholar 

  • White, J. (1988). The anatomy. In W. B. Wood (Ed.), The nematode C. elegans (pp. 81–122). NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B, 314(1165), 1–340.

    Article  CAS  Google Scholar 

  • Worsaae, K., & Rouse, G. W. (2010). The simplicity of males: Dwarf males of four species of Osedax (Siboglinidae; Annelida) investigated by confocal laser scanning microscopy. Journal of Morphology, 271(2), 127–142.

    Article  PubMed  Google Scholar 

  • Worsaae, K., Sterrer, W., Kaul-Strehlow, S., Hay-Schmidt, A., & Giribet, G. (2012). An anatomical description of a miniaturized acorn worm (Hemichordata, Enteropneusta) with asexual reproduction by paratomy. PLoS ONE, 7(11), e48529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh, J. (2002). The effect of miniaturized body size on skeletal morphology in frogs. Evolution, 56(3), 628–641.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Polilov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polilov, A.A. (2016). Analysis of Peculiar Miniaturization-Related Structural Features in Different Groups of Animals. In: At the Size Limit - Effects of Miniaturization in Insects. Springer, Cham. https://doi.org/10.1007/978-3-319-39499-2_12

Download citation

Publish with us

Policies and ethics