Skip to main content

Hyper-Polarized Deuterium Molecules: An Option to Produce and Store Polarized Fuel for Nuclear Fusion?

  • Conference paper
  • First Online:
Nuclear Fusion with Polarized Fuel

Abstract

The use of nuclear-polarized particles is an interesting option to increase the energy output of future fusion reactors or to decrease their costs. However, before polarized particles can be used as polarized fuel studies on production and handling of sufficient amounts of polarized fuels are necessary. This should not be a problem \(\mathrm{for}\ {}{^3}\mathrm{He}\) and T, because both can be polarized by so called “optical-pumping”. Unfortunately, this method has not been very successful in producing polarized deuterium yet. For the use of polarized fuel in magnetic-confinement fusion devices (e.g. in tokamaks) the production of polarized deuterium molecules by recombination of polarized deuterium atoms from a polarized atomic beam source is another option. In first experiments with hydrogen, the initial nuclear polarization of about 0.9 has mostly been preserved during the recombination process on a Fomblin surface. For deuterium polarization losses due to wall collisions are expected to be substantially reduced when the temperature of the deuterium gas is lowered to near liquefaction temperatures. Therefore, storing of polarized deuterium molecules seems to be possible, either as very cold gas in strong magnetic fields, or by freezing out as polarized deuterium ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Paetz gen. Schieck, Contribution to these proceedings

    Google Scholar 

  2. Ch. Leemann et al., Helv. Phys. Acta 44, 141 (1971)

    Google Scholar 

  3. A. Zelenski et al., Rev. Sci. Instrum. 87, 02B705 (2016)

    Article  Google Scholar 

  4. M.B. Schneider, T.B. Clegg, Nucl. Instrum. Methods Phys. Res., Sect. A 254, 630 (1987)

    Article  ADS  Google Scholar 

  5. M. Kinsho, Y. Mori, Rev. Sci. Instrum. 65, 1388 (1994)

    Article  ADS  Google Scholar 

  6. E. Steffens, W. Haeberli, Rep. Prog. Phys. 66, 1887 (2003)

    Article  ADS  Google Scholar 

  7. M. Mikirtytchiants et al., Nucl. Instrum. Methods Phys. Res., Sect A 721, 83 (2013)

    Google Scholar 

  8. A. Airapetian et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 68 (2005)

    Article  ADS  Google Scholar 

  9. J.S. Price, W. Haeberli, Nucl. Instrum. Methods Phys. Res., Sect. A 349, 321 (1994)

    Article  ADS  Google Scholar 

  10. J.F.J. van den Brand et al., Phys. Rev. Lett. 78, 1235 (1997)

    Article  ADS  Google Scholar 

  11. T. Wise et al., Phys. Rev. Lett. 87, 042701 (2001)

    Article  ADS  Google Scholar 

  12. P. Lenisa et al., Eur. Phys. J. D 29, 21 (2004)

    Article  Google Scholar 

  13. J.S. Price, W. Haeberli, Nucl. Instrum. Methods Phys. Res., Sect. A 326, 416 (1993)

    Article  ADS  Google Scholar 

  14. R. Engels et al., Rev. Sci. Instrum. 74, 4607 (2003)

    Article  ADS  Google Scholar 

  15. R. Engels et al., Rev. Sci. Instrum. 85, 103505 (2014)

    Article  ADS  Google Scholar 

  16. R.F. Code, N.F. Ramsey, Phys. Rev. A 4, 1945 (1971)

    Article  ADS  Google Scholar 

  17. A. Abragam, The Principles of Nuclear Magnetism, 2nd edn. (Oxford University Press, London, 1962)

    Google Scholar 

  18. G. Ciullo, Proceedings of the 21st international symposium on spin physics (SPIN2014), 20–24 Oct. 2014 Peking University, Beijing, China. Int. J. Mod. Phys.: Conf. Ser. 40, 1660149 (2016)

    Google Scholar 

  19. M. Büscher et al., Contribution to these proceedings

    Google Scholar 

  20. R. Engels et al., Phys. Part. Nuc. 45, 341 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation (Project 14-12-01056) and the Deutsche Forschungsgemeinschaft (DFG Project 436 RUS 113/977/0-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Engels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Engels, R. et al. (2016). Hyper-Polarized Deuterium Molecules: An Option to Produce and Store Polarized Fuel for Nuclear Fusion?. In: Ciullo, G., Engels, R., Büscher, M., Vasilyev, A. (eds) Nuclear Fusion with Polarized Fuel. Springer Proceedings in Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-39471-8_4

Download citation

Publish with us

Policies and ethics