Skip to main content

Spin Physics and Polarized Fusion: Where We Stand

  • Conference paper
  • First Online:
Nuclear Fusion with Polarized Fuel

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 187))

Abstract

A summary of the present status of nuclear fusion is given with emphasis on utilizing spin-polarized particles as fuel. The reactions considered are those concerning the four- and five-nucleon systems and especially the D + D reactions for which the status of the theory and the experimental data are presented. Recent progress has been achieved by microscopic calculations of the D + D reactions. New aspects concern e.g. the increased cross-sections at very low energies by electron screening. The need to get more experimental data is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Fig. 19 of that reference was meant to compare the proton versus neutron channel and the data is from an early fit and not calibrated. The ordinate scale should be understood as arbitrary and the result for the proton channel is correctly given in Fig. 23.

References

  1. R.M. Kulsrud, H.P. Furth, E.J. Valeo, M. Goldhaber, Phys. Rev. Lett. 49, 1248 (1982)

    Article  ADS  Google Scholar 

  2. R.M. Kulsrud, Nucl. Instr. Meth. A271, 4 (1988)

    Article  ADS  Google Scholar 

  3. M. Tanaka (ed), Proceedings of the RCNP Workshop on Spin Polarized Nucl. Fusions (POLUSION99), RCNP Osaka (1999)

    Google Scholar 

  4. H. Paetz gen. Schieck, Eur. Phys. J. A 44, 321 (2010)

    Google Scholar 

  5. H. Paetz gen. Schieck, Nuclear Physics with Polarized Particles, Lecture Notes in Physics, vol. 842 (Springer, Heidelberg, 2012)

    Google Scholar 

  6. A. Honig, A. Sandorfi, in Proceedings 17th International AIP Conference on Spin Physics Symposium (SPIN2006), ed. by K. Imai, T. Murakami, N. Saito, K. Tanida, vol. 915, Kyoto (2007) p. 1010

    Google Scholar 

  7. J.-P. Didelez, C. Deutsch, J. Phys. Conf. Series 295, 012169 (2011)

    Article  ADS  Google Scholar 

  8. J.-P. Didelez, C. Deutsch, Laser Part. Beams 29, 169 (2011)

    Article  Google Scholar 

  9. A. Deltuva, A. Fonseca, Phys. Rev. C 76, 021001(R) (2007)

    Article  ADS  Google Scholar 

  10. A. Deltuva, A. Fonseca, Phys. Rev. C 81, 054002 (2010)

    Article  ADS  Google Scholar 

  11. A. Huke, K. Czerski, P. Heide, G. Ruprecht, N. Targosz, W. \(\dot{\rm {Z}}\)ebrowski. Phys. Rev. C 78, 015803 (2008)

    Google Scholar 

  12. C. Rolfs, E. Somorjai, Nucl. Instr. Meth. Phys. Res. B 99, 297 (1995)

    Google Scholar 

  13. Ch. Leemann, H. Bürgisser, P. Huber, U. Rohrer, H. Paetz gen. Schieck, F. Seiler. Helv. Phys. Acta 44, 141 (1971)

    Google Scholar 

  14. Ch. Leemann, H. Bürgisser, P. Huber, U. Rohrer, H. Paetz gen. Schieck, F. Seiler, Ann. Phys. (N.Y.) 66, 810 (1971)

    Google Scholar 

  15. W.H. Geist, C.R. Brune, H.J. Karwowski, E.J. Ludwig, K.D. Veal, G.M. Hale, Phys. Rev. C 60, 054003 (1999)

    Article  ADS  Google Scholar 

  16. D. Braizinha, C.R. Brune, A.M. Eiró, B.M. Fisher, H.J. Karwowski, D.S. Leonard, E.J. Ludwig, F.D. Santos, I.J. Thompson, Phys. Rev. C 69, 0246008 (2004)

    Article  Google Scholar 

  17. H. Grunder, R. Gleyvod, G. Lietz, G. Morgan, H. Rudin, F. Seiler, A. Stricker, Helv. Phys. Acta 44, 662 (1971)

    Google Scholar 

  18. F. Seiler, E. Baumgartner, Nucl. Phys. A 153, 193 (1970)

    Article  ADS  Google Scholar 

  19. G. Hale, G. Doolen, LA-9971-MS, Los Alamos (1984)

    Google Scholar 

  20. R.J. Knize, in Proceedings of the 6th International Symposium on Polarization Phenomena in Nuclear Physics ed. by M. Kondo et al., Osaka (1985). Suppl. J. Phys. Soc. Jpn. 55 (1986)

    Google Scholar 

  21. H.M. Hofmann, in Proceedings of the Models and Methods in Few-Body Physics, Lisboa, Portugal, 1986, eds. by L.S. Ferreira, A.C. Fonseca, L. Streit, Lecture Notes in Physics, vol. 273 (Springer, Berlin, 1987) p. 243

    Google Scholar 

  22. S. Lemaître, H. Paetz gen. Schieck. Few-Body Syst. 9, 155 (1990)

    Article  ADS  Google Scholar 

  23. S. Lemaître, H. Paetz gen. Schieck, Ann. Phys. (Leipzig) 2, 503 (1993)

    Google Scholar 

  24. O. Geiger, S. Lemaître, H. Paetz gen. Schieck. Nucl. Phys. A586, 140 (1995)

    Article  ADS  Google Scholar 

  25. A. Lane, R. Thomas, Rev. Mod. Phys. 30, 257 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Fick, U. Weiß, Z. Phys. 265, 87 (1973)

    Article  ADS  Google Scholar 

  27. P. Kozma, P. Bém, Nucl. Phys. A 442, 17 (1985)

    Article  ADS  Google Scholar 

  28. D.S. Leonard, H.J. Karwowski, C.R. Brune, B. Fisher, E.J. Ludwig, Phys. Rev. C 73, 045801 (2006)

    Article  ADS  Google Scholar 

  29. T. Katabuchi, K. Kudo, K. Masuno, T. Iizuka, Y. Aoki, Y. Tagishi, Phys. Rev. C 64, 047601 (2001)

    Article  ADS  Google Scholar 

  30. A. Imig, C. Düweke, R. Emmerich, J. Ley, K.O. Zell, H. Paetz gen. Schieck. Phys. Rev. C 73, 024001 (2006)

    Article  ADS  Google Scholar 

  31. K.A. Fletcher, Z. Ayer, T.C. Black, R.K. Das, H.J. Karwowski, E.J. Ludwig, G.M. Hale, Phys. Rev. C 49, 2305 (1994)

    Article  ADS  Google Scholar 

  32. J.S. Zhang, K.F. Liu, G.W. Shuy, Phys. Rev. Lett. 55, 1649 (1985)

    Article  ADS  Google Scholar 

  33. J.S. Zhang, K.F. Liu, G.W. Shuy, Phys. Rev. Lett. 57, 1410 (1986)

    Article  ADS  Google Scholar 

  34. D. Fick, H.M. Hofmann, Phys. Rev. Lett. 55, 1650 (1983)

    Article  ADS  Google Scholar 

  35. H.M. Hofmann, D. Fick, Phys. Rev. Lett. 52, 2038 (1984)

    Article  ADS  Google Scholar 

  36. H.M. Hofmann, D. Fick, Phys. Rev. Lett. 57, 1410 (1986)

    Article  Google Scholar 

  37. E. Uzu, S. Oryu, M. Tanifuji, in [3], p. 30

    Google Scholar 

  38. E. Uzu (2002), arXiv:nucl-th/0210026

  39. J.S. Zhang, K.F. Liu, G.W. Shuy, Phys. Rev. C 60, 054614 (1999)

    Article  ADS  Google Scholar 

  40. C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001)

    Article  ADS  Google Scholar 

  41. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  42. P. Navrátil, S. Quaglioni, I. Stetcu, B.R. Barrett, J. Phys. G 36, 083101 (2009)

    Article  ADS  Google Scholar 

  43. P. Navrátil, S. Quaglioni (2011), arXiv:1110.0460v1 [nucl-th]

  44. P. Navrátil, S. Quaglioni, Phys. Rev. Lett. 108, 042503 (2012)

    Article  ADS  Google Scholar 

  45. P. Navrátil, S. Quaglioni, Phys. Rev. C 83, 044609 (2011)

    Article  ADS  Google Scholar 

  46. F. Raiola et al., Eur. Phys. J. A 13, 377 (2002)

    Article  ADS  Google Scholar 

  47. M. Temporal, V. Brandon, B. Canaud, J.P. Didelez, R. Fedosejevs, R. Ramis, Nucl. Fusion 52, 103011 (2012)

    Article  ADS  Google Scholar 

  48. Physics Today, AIP New York, 8/(1982)

    Google Scholar 

  49. R. Engels et al., Phys. Rev. Lett. 115, 113007 (2015)

    Article  ADS  Google Scholar 

  50. D.M. Nikolenko, I.A. Rachek, Yu.V. Shestakov, D.K. Toporkov, in Proceedings of the XIVth International Workshop on Polarized Sources, Targets, and Polarimeters, St. Petersburg (2011)

    Google Scholar 

  51. R. Frisch, O. Stern, Z. Phys. 85, 4 (1933)

    Article  ADS  Google Scholar 

  52. R. Engels, R. Emmerich, J. Ley, G. Tenckhoff, H. Paetz gen. Schieck, Rev. Sci. Instr. 74, 345 (2003)

    Google Scholar 

  53. R. Engels, R. Kröll, N.  Nikolaev, F. Rathmann, H. Ströher, N. Chernov, L. Kochenda, P. Kravtsov, V. Trofimov, A. Vasiliev, K. Grigoriev, M. Mikirtytchiants, S. Kiselev, M. Marusina, H. Paetz gen. Schieck, Fusion of polarized deuterons, in Proceedings of the HIF2010 Conference (GSI, Darmstadt, 2010)

    Google Scholar 

  54. R.M. More, Phys. Rev. Lett 51, 396 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author thanks Ralf Engels for many fruitful discussions and ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Paetz gen. Schieck .

Editor information

Editors and Affiliations

Appendix

Appendix

The cross-sections for the two cases spin-1 on spin-1/2 and spin-1 on spin-1 consist of the unpolarized cross-sections, a number of vector and tensor analyzing powers and spin-correlation coefficients. The coordinate system chosen is with the z axis in the incident momentum direction, the y axis in the direction of the normal to the scattering plane and the x axis forming a righthanded system with both. The Cartesian representation is chosen.

All “polarized” cross-sections are \(\phi \) dependent and this dependence must be worked out for the contribution from each observable (for the determination of this “azimuthal complexity” see [4]) and is not given here.

All observables compatible with parity conservation and hermiticity are listed. For the special spin-1 on spin-1 case of deuterons on deuterons a number of terms are redundant due to the identity of the entrance-channel particles.

2.1.1 Spin-1 Beam on Spin-1/2 Target

$$\begin{aligned} \left( \frac{d\sigma (\varTheta ,\phi )}{d\varOmega }\right) _{\Phi =0}=\left( \frac{d\sigma (\varTheta )}{d\varOmega }\right) _0&\left\{ 1 +\frac{3}{2}A_y^{(b)}(\varTheta )p_y+A_y^{(t)}q_y+\frac{1}{2}A_{zz}^{(b)}(\varTheta )p_{zz}+\frac{2}{3} A_{xz}^{(b)}(\varTheta )p_{xz} \right. \nonumber \\&\;\;+ \frac{1}{6}A_{xx-yy}^{(b)}(\varTheta )p_{xx-yy}\nonumber \\&\;\;+ \frac{3}{2}\left[ C_{x,x}(\varTheta )p_xq_x + C_{y,y}(\varTheta )p_yq_y + C_{z,z}(\varTheta )p_zq_z \right. \nonumber \\&\qquad \quad + \left. C_{z,x}(\varTheta ) p_zq_x+C_{x,z}(\varTheta ) p_xq_z \right] \nonumber \\&\;\;+ \frac{2}{3}\left[ C_{xy,x}(\varTheta )p_{xy}q_{x}+C_{yz,x}(\varTheta )p_{yz}q_x \right. \nonumber \\&\qquad \quad + \left. C_{xz,y}(\varTheta )p_{xz}q_{y}+C_{xy,z}(\varTheta )p_{xy}q_z +C_{yz,z}(\varTheta )p_{yz}q_{z} \right] \nonumber \\&\;\;+ \left. \frac{1}{6} C_{xx-yy,y}(\varTheta )p_{xx-yy}q_y +\frac{1}{2} C_{zz,y}(\varTheta )p_{zz}q_y\right\} . \end{aligned}$$
(2.14)

The symbols b, t, p, and q designate the beam, the target, and the beam and target polarizations, respectively. Here 18 observables are measurable: one unpolarized cross-section, two vector and three tensor analyzing powers, and 12 correlation coefficients.

2.1.2 General Spin-1 on Spin-1 Case

$$\begin{aligned} \left( \frac{d\sigma (\varTheta ,\phi )}{d\varOmega }\right) _{\Phi =0} = \left( \frac{d\sigma (\varTheta )}{d\varOmega }\right) _0&\left\{ 1 + \frac{3}{2}\left[ A_y^{(b)}(\varTheta )p_y + A_y^{(t)}q_y\right] +\frac{1}{2}\left[ A_{zz}^{(b)}(\varTheta )p_{zz}+A_{zz}^{(t)}(\varTheta )q_{zz}\right] \right. \nonumber \\&\;\;+ \frac{1}{6}\left[ A_{xx-yy}^{(b)}(\varTheta )p_{xx-yy}+A_{xx-yy}^{(t)}(\varTheta )q_{xx-yy}\right] \nonumber \\&\;\;+ \frac{2}{3}\left[ A_{xz}^{(b)}(\varTheta )p_{xz}+A_{xz}^{(t)}(\varTheta )q_{xz}\right] \nonumber \\&\;\;+ \frac{9}{4}\left[ C_{y,y}(\varTheta )p_yq_y + C_{x,x}(\varTheta )p_xq_x + C_{x,z}(\varTheta )p_xq_z\right. \nonumber \\&\qquad \quad {\left. +C_{z,x}(\varTheta ) p_zq_x+C_{z,z}(\varTheta ) p_zq_z\right] }\nonumber \\&\;\;+\frac{3}{4}\left[ C_{y,zz}(\varTheta )p_yq_{zz}+C_{zz,y}(\varTheta )p_{zz}q_y\right] \nonumber \\&\;\;+ C_{y,xz}(\varTheta )p_yq_{xz}+C_{xz,y}(\varTheta )p_{xz}q_y +C_{x,yz}(\varTheta )p_{x}q_{yz}\nonumber \\&\;\;+ C_{yz,x}(\varTheta )p_{yz}q_{x}+C_{z,yz}(\varTheta )p_{z}q_{yz} +C_{yz,z}(\varTheta )p_{yz}q_{z}\nonumber \\&\;\;+\frac{1}{4}\left[ C_{y,xx-yy }(\varTheta )p_yq_{xx-yy} + C_{xx-yy,y}(\varTheta )p_{xx-yy}q_y \right. \nonumber \\&\qquad \quad {\left. +C_{zz,zz}(\varTheta )p_{zz}q_{zz}\right] }\nonumber \\&\;\;+\frac{1}{3}\left[ C_{zz,xz}(\varTheta )p_{zz}q_{xz}+C_{xz,zz}(\varTheta )p_{xz}q_{zz}\right] \nonumber \\&\;\;+\frac{1}{12}\left[ C_{zz,xx-yy}(\varTheta )p_{zz}q_{xx-yy}+C_{xx-yy,zz}(\varTheta )p_{xx-yy}q_{zz}\right] \nonumber \\&\;\;+\frac{4}{9}\left[ C_{xz,xz}(\varTheta )p_{xz}q_{xz}+C_{yz,yz}(\varTheta )p_{yz}q_{yz}\right] \nonumber \\&\;\;+\frac{8}{9}\left[ C_{xy,yz}(\varTheta )p_{xy}q_{yz}+C_{yz,xy}(\varTheta )p_{yz}q_{xy}\right] \nonumber \\&\;\;+\frac{16}{9} C_{xy,xy}(\varTheta )p_{xy}q_{xy} \nonumber \\&\;\;+\frac{1}{9}\left[ C_{xz,xx-yy}(\varTheta )p_{xz}q_{xx-yy}+C_{xx-yy,xz}(\varTheta )p_{xx-yy}q_{xz} \right] \nonumber \\&\;\;+\frac{1}{36} C_{xx-yy,xx-yy}(\varTheta )p_{xx-yy}q_{xx-yy} \nonumber \\&\;\;+ \frac{1}{2}\left[ C_{x,xy}(\varTheta )p_xq_{xy} + C_{xy,x}(\varTheta )p_{xy}q_x + C_{z,xy}(\varTheta )p_zq_{xy}\right. \nonumber \\&\qquad \quad {\left. +C_{xy,z}(\varTheta ) p_{xy}q_z\right] \left. \right\} }. \end{aligned}$$
(2.15)

Here the number of observables (in parentheses for D \(+\) D) is 41 (24): one unpolarized cross-section, two (one) vector and six (three) tensor analyzing powers, and 32 (19) correlation coefficients.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Paetz gen. Schieck, H. (2016). Spin Physics and Polarized Fusion: Where We Stand. In: Ciullo, G., Engels, R., Büscher, M., Vasilyev, A. (eds) Nuclear Fusion with Polarized Fuel. Springer Proceedings in Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-39471-8_2

Download citation

Publish with us

Policies and ethics