Expansion of eIF4E and 4E-BP Family Members in Deuterostomes

  • Kathleen M. Gillespie
  • Tsvetan R. Bachvaroff
  • Rosemary JagusEmail author


Analysis of eIF4E sequences from the more than twenty fish genomes currently available, as well as those of select tetrapods, echinoderm (Strongylocentrotus purpuratus), tunicate (Ciona intestinalis), and cephalocordate (Branchiostoma lanceolatum), has allowed a glimpse of the origins and evolution of the eIF4E and 4E-BP families in vertebrates. Metazoan eIF4E family members group into three classes, with Class I containing the canonical cap-binding translational initiation factor, eIF4E-1. Class II and III eIF4E family members have distinct characteristics and have been shown to regulate the translation of particular mRNAs. All deuterostomes have at least one representative from each of the three classes of eIF4E. Outgroup deuterostomes such as sea urchins, tunicates, and lancelets have only one eIF4E from each class: eIF4E-1, eIF4E-2, and eIF4E-3. Evidence of the duplication of Class I eIF4Es can be seen in elephant shark (Callorhinchus milii), coelacanth (Latimeria chalumnae), and the basal ray-finned fish, spotted gar (Lepisosteus oculatus), which all have three eIF4E-1 subclasses: eIF4E-1A, -1B, and -1C. The emergence of eIF4E-1 subclasses is consistent with the duplication of Class I prior to the teleost-specific whole genome duplication (TGD), probably at one of the vertebrate genome duplications that occurred at ~550 Ma (VGD1) and 500 Ma (VGD2). eIF4E-1C has maintained the function of a prototypical initiation factor. It has been retained in all teleosts, but lost in tetrapods; eIF4E-1B has neofunctionalized to become a tissue-specific regulator of mRNA recruitment. It has been retained in tetrapods and most teleosts, but lost in the Tetraodontiforms such as Tetroadon and Takifugu species. Some percomorphs have acquired new cognates of eIF4E-1A and eIF4E-3 to give eIF4E-1A1 and -1A2 and eIF4E-3A and -3B. A duplication of class II eIF4Es occurred prior to the emergence of the tetrapod branch to give eIF4E-2A and -2B. eIF4E-2B is retained by amphibians and teleosts, but has been lost in coelacanth and amniotes. Overall, duplication within the different classes of eIF4E occurred early in vertebrate evolution with some neofunctionalization. Further duplication within teleosts of eIF4E-1A and eIF4E-3 occurred and has been retained in some teleost lineages. Asymmetric losses in different vertebrate classes also occurred. Similarly, expansion of the 4E-BPs took place in vertebrates to give three classes, 4E-BP1, -BP2, and -BP3, with further duplication in select teleosts to give six 4E-BP cognates, with asymmetric loss in more recently emerging teleosts.


eIF4E 4E-BP Translation initiation Cap-dependent translation Genome duplication Evolution translation factors Teleost 



RJ and TB are supported by NIH R01ES021949-01 and NSF OCE1313888 to RJ and Allen R. Place. KG was supported by a graduate fellowship from the NOAA-EPP-funded Living Marine Sciences Cooperative Science Center (LMRCSC), NA11SEC4810002. Thanks are extended to Dr. Helen Dooley and Anthony Redmond from the University of Aberdeen for providing transcriptomic sequences of eIF4Es and 4E-BPs from spotted cat shark, Scyliorhinus canicula. This work was begun and inspired by Dr. Bhavesh Joshi, currently chief scientific officer, BridgePath Scientific.


  1. 1.
    Davidson WS, Koop BF, Jones SJ, Iturra P, Vidal R, Maass A, Jonassen I, Lien S, Omholt SW. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol. 2010;11:403.Google Scholar
  2. 2.
    Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, Rounge TB, Paulsen J, Solbakken MH, Sharma A, Wetten OF, Lanzén A, Winer R, Knight J, Vogel JH, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen RB, Tina KG, Espelund M, Nepal C, Previti C, Karlsen BO, Moum T, Skage M, Berg PR, Gjøen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen SD, Searle S, Lien S, Nilsen F, Jonassen I, Omholt SW, Stenseth NC, Jakobsen KS. The genome sequence of Atlantic cod reveals a unique immune system. Nature. 2011;477:207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bernardi G, Wiley EO, Mansour H, Miller MR, Orti G, Haussler D, O’Brien SJ, Ryder OA, Venkatesh B. The fishes of Genome 10K. Mar Genomics. 2012;7:3–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C, Labadie K, Alberti A, Aury JM, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff JN, Genêt C, Wincker P, Jaillon O, Roest Crollius H, Guiguen Y. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff JN, Lesch KP, Bisazza A, Minx P, Hillier L, Wilson RK, Fuerstenberg S, Boore J, Searle S, Postlethwait JH, Warren WC. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat Genet. 2013;45:567–72.Google Scholar
  6. 6.
    Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Q, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46:253–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Spaink HP, Jansen HJ, Dirks RP. Advances in genomics of bony fish. Brief Funct Genomics. 2014;13:144–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: emerging fish models to study the genomics of vertebrate Evo-Devo. J Exp Zool B Mol Dev Evol. 2015;324:316–41.CrossRefPubMedGoogle Scholar
  9. 9.
    Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith JJ, Robinson M, Dorrington RA, Gerdol M, Aken B, Biscotti MA, Barucca M, Baurain D, Berlin AM, Blatch GL, Buonocore F, Burmester T, Campbell MS, Canapa A, Cannon JP, Christoffels A, De Moro G, Edkins AL, Fan L, Fausto AM, Feiner N, Forconi M, Gamieldien J, Gnerre S, Gnirke A, Goldstone JV, Haerty W, Hahn ME, Hesse U, Hoffmann S, Johnson J, Karchner SI, Kuraku S, Lara M, Levin JZ, Litman GW, Mauceli E, Miyake T, Mueller MG, Nelson DR, Nitsche A, Olmo E, Ota T, Pallavicini A, Panji S, Picone B, Ponting CP, Prohaska SJ, Przybylski D, Saha NR, Ravi V, Ribeiro FJ, Sauka-Spengler T, Scapigliati G, Searle SM, Sharpe T, Simakov O, Stadler PF, Stegeman JJ, Sumiyama K, Tabbaa D, Tafer H, Turner-Maier J, van Heusden P, White S, Williams L, Yandell M, Brinkmann H, Volff JN, Tabin CJ, Shubin N, Schartl M, Jaffe DB, Postlethwait JH, Venkatesh B, Di Palma F, Lander ES, Meyer A, Lindblad-Toh K. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013;496:311–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, Ohta Y, Flajnik MF, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy SW, Irimia M, Korzh V, Kondrychyn I, Lim ZW, Tay BH, Tohari S, Kong KW, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney BJ, Ingham PW, Tay A, Hillier LW, Minx P, Boehm T, Wilson RK, Brenner S, Warren WC. Elephant shark genome provides unique insights into gnathostome evolution. Nature. 2014;505:174–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, Berlin AM, Campbell MS, Barrell D, Martin KJ, Mulley JF, Ravi V, Lee AP, Nakamura T, Chalopin D, Fan S, Wcisel D, Cañestro C, Sydes J, Beaudry FE, Sun Y, Hertel J, Beam MJ, Fasold M, Ishiyama M, Johnson J, Kehr S, Lara M, Letaw JH, Litman GW, Litman RT, Mikami M, Ota T, Saha NR, Williams L, Stadler PF, Wang H, Taylor JS, Fontenot Q, Ferrara A, Searle SM, Aken B, Yandell M, Schneider I, Yoder JA, Volff JN, Meyer A, Amemiya CT, Venkatesh B, Holland PW, Guiguen Y, Bobe J, Shubin NH, Di Palma F, Alföldi J, Lindblad-Toh K, Postlethwait JH. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016.Google Scholar
  12. 12.
    Maloof AC, Porter SM, Moore JL, Dudas FO, Bowring SA, Higgins JA, Fike DA, Eddy MP. The earliest Cambrian record of animals and ocean geochemical change. Geol Soc Bull. 2010;122:1731–74.CrossRefGoogle Scholar
  13. 13.
    Budd GE. At the origin of animals: the revolutionary cambrian fossil record. Curr Genomics. 2013;14:344–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science. 2011;334:1091–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Dornbos SQ, Bottjer DJ. Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution. Geology. 2000;28:839–42.CrossRefGoogle Scholar
  16. 16.
    Marlétaz F, Holland LZ, Laudet V, Schubert M. Retinoic acid signaling and the evolution of chordates. Int J Biol Sci. 2006;2:38–47.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Blair JE, Hedges SB. Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol. 2005;22:2275–84.CrossRefPubMedGoogle Scholar
  18. 18.
    Meyer A, Schartl M. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol. 1999;11:699–704.CrossRefPubMedGoogle Scholar
  19. 19.
    Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, Yandell MD, Manousaki T, Meyer A, Bloom OE, Morgan JR, Buxbaum JD, Sachidanandam R, Sims C, Garruss AS, Cook M, Krumlauf R, Wiedemann LM, Sower SA, Decatur WA, Hall JA, Amemiya CT, Saha NR, Buckley KM, Rast JP, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin CJ, Piccinelli P, Elgar G, Ruffier M, Aken BL, Searle SM, Muffato M, Pignatelli M, Herrero J, Jones M, Brown CT, Chung-Davidson YW, Nanlohy KG, Libants SV, Yeh CY, McCauley DW, Langeland JA, Pancer Z, Fritzsch B, de Jong PJ, Zhu B, Fulton LL, Theising B, Flicek P, Bronner ME, Warren WC, Clifton SW, Wilson RK, Li W. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat Genet. 2013;45:415-21, 421e1-2.Google Scholar
  21. 21.
    Clark MS. Genomics and mapping of teleostei (bony fish). Comp Funct Genomics. 2003;4:182–93.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ulloa PE, Iturra P, Neira C. Zebrafish as a model organism for nutrition and growth: towards comparative studies of nutritional genomics applied to aquacultured fish. Rev Fish Biol Fisheries. 2015.Google Scholar
  23. 23.
    Betancur RR, Broughton RE, Wiley EO, Carpenter K, López JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton Ii JC, Zhang F, Buser T, Campbell MA, Ballesteros JA, Roa-Varon A, Willis S, Borden WC, Rowley T, Reneau PC, Hough DJ, Lu G, Grande T, Arratia G, Ortí G. The tree of life and a new classification of bony fishes. PLoS Curr. 2013;5.Google Scholar
  24. 24.
    Sémon M, Wolfe KH. Consequences of genome duplication. Curr Opin Genet Dev. 2007;17:505–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Sémon M, Wolfe KH. Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol. 2007;24:860–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Amores A, Catchen J, Ferrara A, Fontenot Q, Postlethwait JH. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication. Genetics. 2011;188:799–808.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ravi V, Venkatesh B. Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev. 2008;18:544–50.CrossRefPubMedGoogle Scholar
  28. 28.
    Brunet FG, Roest Crollius H, Paris M, Aury JM, Gibert P, Jaillon O, Laudet V, Robinson-Rechavi M. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Mol Biol Evol. 2006;23:1808–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Steinke D, Salzburger W, Braasch I, Meyer A. Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genom. 2006;7:20.CrossRefGoogle Scholar
  30. 30.
    Braasch I, Postlethwait JH. Polyploidy and genome evolution. Springer; 2012. P. 341–83.Google Scholar
  31. 31.
    Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 2004;20:481–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Sémon M, Wolfe KH. Reciprocal gene loss between Tetraodo n and zebrafish after whole genome duplication in their ancestor. Trends Genet. 2007;23:108–12.Google Scholar
  33. 33.
    Lauder G, Liem K. The evolution and interrelationships of the Actinopterygian fishes. Bull Mus Comp Zool. 1989;150:95–187.Google Scholar
  34. 34.
    Dahm R, Geisler R. Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar Biotechnol (NY). 2006;8:329–45.CrossRefGoogle Scholar
  35. 35.
    Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics. 2014;289:1045–60.CrossRefPubMedGoogle Scholar
  36. 36.
    Minshall N, Reiter MH, Weil D, Standart N. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem. 2007;282:37389–401.Google Scholar
  37. 37.
    Evsikov AV, Marín de Evsikova C. Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eukaryotic translation initiation factor 4E in Tetrapoda. Dev Genes Evol. 2009;219:111–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Joshi B, Lee K, Maeder DL, Jagus R. Phylogenetic analysis of eIF4E-family members. BMC Evol Biol. 2005;5:48.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Robalino J, Joshi B, Fahrenkrug SC, Jagus R. Two zebrafish eIF4E family members are differentially expressed and functionally divergent. J Biol Chem. 2004;279:10532–41.CrossRefPubMedGoogle Scholar
  40. 40.
    Gillespie KM. Characterization of the eukaryotic translation initiation factor eIF4E (eIF4E) family members in zebrafish (Danio rerio). 2015.Google Scholar
  41. 41.
    Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Evsikov AV, Marín de Evsikova C. Gene expression during the oocyte-to-embryo transition in mammals. Mol Reprod Dev. 2009;76:805–18.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kubacka D, Miguel RN, Minshall N, Darzynkiewicz E, Standart N, Zuberek J. Distinct Features of Cap Binding by eIF4E1b Proteins. J Mol Biol. 2015;427:387–405.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kuraku S. Insights into cyclostome phylogenomics: pre-2R or post-2R. Zoolog Sci. 2008;25:960–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Kuraku S, Meyer A, Kuratani S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol. 2009;26:47–59.CrossRefPubMedGoogle Scholar
  46. 46.
    Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA. 2011;2:277–98.CrossRefPubMedGoogle Scholar
  47. 47.
    Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–63.CrossRefPubMedGoogle Scholar
  48. 48.
    Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15:2852–64.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gingras AC, Kennedy SG, O’Leary MA, Sonenberg N, Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12:502–13.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Haghighat A, Mader S, Pause A, Sonenberg N. Repression of cap-dependent translation by 4E-binding protein 1: competition with p220 for binding to eukaryotic initiation factor-4E. EMBO J. 1995;14:5701–9.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.CrossRefPubMedGoogle Scholar
  53. 53.
    Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Semin Cell Dev Biol. 2014;36:102–12.CrossRefPubMedGoogle Scholar
  54. 54.
    Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Umenaga Y, Paku KS, In Y, Ishida T, Tomoo K. Identification and function of the second eIF4E-binding region in N-terminal domain of eIF4G: comparison with eIF4E-binding protein. Biochem Biophys Res Commun. 2011;414:462–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Paku KS, Umenaga Y, Usui T, Fukuyo A, Mizuno A, In Y, Ishida T, Tomoo K. A conserved motif within the flexible C-terminus of the translational regulator 4E-BP is required for tight binding to the mRNA cap-binding protein eIF4E. Biochem J. 2012;441:237–45.CrossRefPubMedGoogle Scholar
  57. 57.
    Lukhele S, Bah A, Lin H, Sonenberg N, Forman-Kay JD. Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. Structure. 2013;21:2186–96.CrossRefPubMedGoogle Scholar
  58. 58.
    Igreja C, Peter D, Weiler C, Izaurralde E. 4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation. Nat Commun. 2014;5:4790.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Peter D, Igreja C, Weber R, Wohlbold L, Weiler C, Ebertsch L, Weichenrieder O, Izaurralde E. Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol Cell. 2015;57:1074–87.CrossRefPubMedGoogle Scholar
  60. 60.
    Yogev O, Williams VC, Hinits Y, Hughes SM. eIF4EBP3L acts as a gatekeeper of TORC1 in activity-dependent muscle growth by specifically regulating Mef2ca translational initiation. PLoS Biol. 2013;11:e1001679.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, Kirchner J, Parkhill JP, Thisse C. Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol. 2004;77:505–19.CrossRefPubMedGoogle Scholar
  62. 62.
    Ohno S. Evolution by gene duplication. Heidelberg, Germany: Springer; 1970.CrossRefGoogle Scholar
  63. 63.
    Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res. 2009;19:1404–18.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kathleen M. Gillespie
    • 1
  • Tsvetan R. Bachvaroff
    • 1
  • Rosemary Jagus
    • 1
    Email author
  1. 1.Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreUSA

Personalised recommendations