Skip to main content

Abstract

The natural history of translation is mysterious but central to our understanding of the origin and evolution of biochemistry and life. tRNA is at the center of this biological process. Its interactions with aminoacyl-tRNA synthetase enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Here we review structural phylogenomic explorations of thousands of genomes and molecular structures that reveal a ‘metabolic-first’ origin of proteins, the early history of tRNA in interaction with cognate synthetase enzymes, the late appearance of a functional ribosome, and the co-evolutionary history of rRNA and proteins during ribosomal growth. We also discuss how the history of amino acid charging and codon specificities is embedded in tRNA and is encoded in genomes. Results uncover a hidden link between the genetic code and protein flexibility and suggest that tRNA molecules are building blocks of ribosomes and genomes. We make explicit the need to understand processes of molecular growth of macromolecules that would explain a primordial ribosome with both biocatalytic and genetic memory storage functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dyson F. Origins of life. Cambridge: Cambridge University Press; 1999.

    Book  Google Scholar 

  2. Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nature Rev Microbiol. 2010;8:849–56.

    Article  CAS  Google Scholar 

  3. Francklyn CS, Minajigi A. tRNA as active chemical scaffold for diverse chemical transformations. FEBS Lett. 2010;584:366–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoeppner MP, Gardner PP, Poole AM. Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol. 2012;8:e1002752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fitch WM, Upper K. The phylogeny of tRNA sequences provides evidence for ambiguity reduction in the origin of the genetic code. Cold Spring Harb Symp Quant Biol. 1987;52:759–67.

    Article  CAS  PubMed  Google Scholar 

  6. Eigen M, Lindemann BF, Tietze M, Winkler-Oswatitsch R, Dress A, von Haeseler A. How old is the genetic code? Science. 1989;244:673–9.

    Article  CAS  PubMed  Google Scholar 

  7. Di Giulio M. The phylogeny of tRNA molecules and the origin of the genetic code. Orig Life Evol Biosph. 1994;24:425–34.

    Article  PubMed  Google Scholar 

  8. Sun F-J, Caetano-Anollés G. The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol. 2008;66:21–35.

    Article  CAS  PubMed  Google Scholar 

  9. Farias ST. Suggested phylogeny of tRNAs based on the construction of ancestral sequences. J Theor Biol. 2013;335:245–8.

    Article  CAS  PubMed  Google Scholar 

  10. Hennig W. Phylogenetic systematics. Urbana: University of Illinois Press; 1966.

    Google Scholar 

  11. Zuckerkandl E. The appearance of new structures and functions in proteins during evolution. J Mol Evol. 1975;7:1–57.

    Article  CAS  PubMed  Google Scholar 

  12. Dayhoff MO. The origin and evolution of protein superfamilies. Fed Proc. 1976;35:2132–8.

    CAS  PubMed  Google Scholar 

  13. Almo SC, Garforth SJ, Hillerich BS, Love JD, Seidel RD, Burley SK. Protein production from the structural genomics perspective: achievements and future needs. Curr Opin Struct Biol. 2013;23:335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reddy TBK, Thomas A, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos E, Kyrpides N. The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res. 2014;. doi:10.1093/nar/gku950.

    Google Scholar 

  16. Wheeler WC. Systematics: a course of lectures. Hoboken: John Wiley & Sons; 2012.

    Book  Google Scholar 

  17. Caetano-Anollés G, Sun F-J, Wang M, Yafremava LS, Harish A, Kim HS, Knudsen V, Caetano-Anollés D, Mittenthal JE. Origin and evolution of modern biochemistry: insights from genomes and molecular structure. Front Biosci. 2008;13:5212–40.

    Article  PubMed  Google Scholar 

  18. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247:536–40.

    CAS  PubMed  Google Scholar 

  19. Orengo CA, Michie A, Jones S, Jones DT, Swindells M, Thornton JM. CATH–a hierarchic classification of protein domain structures. Structure. 1997;5:1093–109.

    Article  CAS  PubMed  Google Scholar 

  20. Caetano-Anollés G, Caetano-Anollés D. An evolutionarily structured universe of protein architecture. Genome Res. 2003;13:1563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nasir A, Caetano-Anollés G. A phylogenomic data-driven exploration of viral origins and evolution. Science Adv. 2015;1:e1500527.

    Article  Google Scholar 

  22. Wang M, Jiang Y-Y, Kim KM, Qu G, Ji H-F, Zhang H-Y, Caetano-Anollés G. A molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation. Mol Biol Evol. 2011;28:567–82.

    Article  CAS  PubMed  Google Scholar 

  23. Laurin M. Recent progress in paleontological methods for dating the Tree of Life. Front Genet. 2012;3:130.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang M, Caetano-Anollés G. The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure. 2009;17:66–78.

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal LE, Caetano-Anollés G. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res. 2007;17:1572–85.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nasir A, Caetano-Anollés G. Comparative analysis of proteomes and functionomes provides insights into origins of cellular diversification. Archaea. 2013;2013:648746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caetano-Anollés G, Kim HS, Mittenthal JE. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA. 2007;104:9358–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim KM, Qin T, Jiang Y-Y, Chen L-L, Xiong M, Caetano-Anollés D, Zhang H-Y, Caetano-Anollés G. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure. 2012;20:67–76.

    Article  CAS  PubMed  Google Scholar 

  29. Caetano-Anollés K, Caetano-Anollés G. Structural phylogenomics reveals gradual evolutionary replacement of abiotic chemistries by protein enzymes in purine metabolism. PLoS ONE. 2013;8:e59300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caetano-Anollés D, Kim KM, Mittenthal JE, Caetano-Anollés G. Proteome evolution and metabolic origins of translation and cellular life. J Mol Evol. 2011;72:14–33.

    Article  CAS  PubMed  Google Scholar 

  31. Caetano-Anollés G, Wang M, Caetano-Anollés D. Structural phylogenomics retrodicts the origin of the genetic code and uncovers the evolutionary impact of protein flexibility. PLoS ONE. 2013;8:e72225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harish A, Caetano-Anollés G. Ribosomal history reveals origins of modern protein synthesis. PLoS ONE. 2012;7:e32776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Caetano-Anollés G, Caetano-Anollés D. Computing the origin and evolution of the ribosome from its structure—uncovering processes of macromolecular accretion benefiting synthetic biology. Comp Struct Biotech J. 2015;13:427–47.

    Article  CAS  Google Scholar 

  34. Dupont CL, Butcher A, Valas RE, Bourne PE, Caetano-Anollés G. History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci USA. 2010;107:10567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nath N, Mitchel JOB, Caetano-Anollés G. The natural history of biocatalytic mechanisms. PLoS Comput Biol. 2014;10:e1003642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Debès C, Wang M, Caetano-Anollés G, Gratër F. Evolutionary optimization of protein folding. PLoS Comput Biol. 2013;9:e1002861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nasir A, Kim KM, Caetano-Anollés G. Global patterns of domain gain and loss in superkingdoms. PLoS Comput Biol. 2014;10:e1003452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim KM, Caetano-Anollés G. The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol. 2011;11:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Caetano-Anollés G, Mittenthal JE, Caetano-Anollés D, Kim KM. A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity. Front Genet. 2014;5:306.

    PubMed  PubMed Central  Google Scholar 

  40. Vandergon TL. Protein domain structure evolution. Molecular Life Sciences. New York: Springer; 2014. doi:10.1007/978-1-4614-6436-5_19-2
.

  41. Caetano-Anollés G. Novel strategies to study the role of mutation and nucleic acid structure in evolution. Plant Cell Tissue Org Cult. 2001;67:115–32.

    Article  Google Scholar 

  42. Caetano-Anollés G. Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol. 2002;4:333–45.

    Google Scholar 

  43. Caetano-Anollés G. Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res. 2002;30:2575–87.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sun F-J, Fleurdépine S, Bousquet-Antonelli C, Caetano-Anollés G, Deragon J-M. Common evolutionary trends for SINE RNA structures. Trends Genet. 2007;23:26–33.

    Article  CAS  PubMed  Google Scholar 

  45. Bailor MH, Sun X, Al-Hashimi HM. Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science. 2010;327:202–6.

    Article  CAS  PubMed  Google Scholar 

  46. Hyeon C, Thirumalai D. Chain length determines the folding rates of RNA. Biopys J. 2012;102:L11–3.

    Article  CAS  Google Scholar 

  47. Fontana W. Modeling ‘evo-devo’ with RNA. BioEssays. 2002;24:1164–77.

    Article  CAS  PubMed  Google Scholar 

  48. Sun F-J, Caetano-Anollés G. Evolutionary patterns in the sequence and structure of transfer RNA: Early origins of Archaea and viruses. PLoS Comput Biol. 2008;4:e1000018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun F-J, Caetano-Anollés G. Evolutionary patterns in the sequence and structure of transfer RNA: A window into early translation and the genetic code. PLoS ONE. 2008;3:e2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun F-J, Caetano-Anollés G. The evolutionary history of the structure of 5S ribosomal RNA. J Mol Evol. 2009;69:430–43.

    Article  CAS  PubMed  Google Scholar 

  51. Sun F-J, Caetano-Anollés G. The ancient history of the structure of ribonuclease P and the early origins of Archaea. BMC Bioinformatics. 2010;11:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Weston PH. Indirect and direct methods in systematics. In: Humphries CJ, editor. Ontogeny and Systematics. New York: Columbia University Press; 1988. p. 27–56.

    Google Scholar 

  53. Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE. The origin, evolution and structure of the protein world. Biochem J. 2009;417:621–37.

    Article  CAS  PubMed  Google Scholar 

  54. Sun F-J, Harish A, Caetano-Anolles G. Phylogenetic utility of RNA structure: evolution’s arrow and emergence of modern biochemistry and diversified life. In: Caetano-Anollés G, editor. Evolutionary bioinformatics and systems biology. Hoboken: Wiley-Blackwell; 2010. p. 329–60.

    Google Scholar 

  55. Przytycka T, Aurora R, Rose GD. A protein taxonomy based on secondary structure. Nature Struct Biol. 1999;6:672–82.

    Article  CAS  PubMed  Google Scholar 

  56. Mittenthal JE, Caetano-Anollés D, Caetano-Anollés G. Biphasic patterns of diversification and the emergence of modules. Front Genet. 2012;3:147.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tal G, Boca SM, Mittenthal JE, Caetano-Anollés G. A dynamic model for evolution of protein structure. J Mol Evol. 2016;82:230–243.

    Google Scholar 

  58. Caetano-Anollés G, Kim KM, Caetano-Anollés D. The phylogenomic roots of modern biochemistry: Origins of proteins, cofactors and protein biosynthesis. J Mol Evol. 2012;74:1–34.

    Article  CAS  PubMed  Google Scholar 

  59. Bukhari SA, Caetano-Anollés G. Origin and evolution of protein fold designs inferred from phylogenomic analysis of CATH domain structures in proteomes. PLoS Comput Biol. 2013;9:e1003009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ikehara K. Possible steps to the emergence of life: The [GADV]-protein world hypothesis. Chem Rec. 2005;5:107–18.

    Article  CAS  PubMed  Google Scholar 

  61. Jakschitz T, Rode BM. Evolution from simple in- organic compounds to chiral peptides. Chem Soc Rev. 2012;41:5484–9.

    Article  CAS  PubMed  Google Scholar 

  62. Söding J, Lupas AN. More than the sum of their parts: On the evolution of proteins from peptides. BioEssays. 2003;25:837–46.

    Article  CAS  PubMed  Google Scholar 

  63. Trifonov EN, Frenkel ZM. Evolution of protein modularity. Curr Op Struct Biol. 2009;18:335–40.

    Article  CAS  Google Scholar 

  64. Goncearenco A, Berezovsky IN. Protein function from its emergence to diversity in contemporary proteins. Phys Biol. 2015;12:045002.

    Article  CAS  PubMed  Google Scholar 

  65. Aziz MF, Caetano-Anollés G. The early history and emergence of molecular functions and modular scale-free behavior. Sci Rep. 2016;6:25058.

    Google Scholar 

  66. Schimmel P, Giege R, Moras D, Yokoyama S. An operational RNA code for amino acids and possible relation to the genetic code. Proc Natl Acad Sci USA. 1993;90:8763–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carter CW Jr, Wolfenden R. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. Proc Natl Acad Sci USA. 2015;112:7489–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Caetano-Anollés G, Sun F-J. The natural history of transfer RNA and its interactions with the ribosome. Front Genet. 2014;5:127.

    PubMed  PubMed Central  Google Scholar 

  69. Rodin SN, Rodin AS. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity. 2008;100:341–55.

    Article  CAS  PubMed  Google Scholar 

  70. Root-Bernstein M, Root-Bernstein R. The ribosome as a missing link in the evolution of life. J Theor Biol. 2015;367:130–58.

    Article  CAS  PubMed  Google Scholar 

  71. Farias ST, Rêgo TG, José MV. Origin and evolution of the peptidyl transferase center from proto-tRNAs. FEBS Open Bio. 2014;4:175–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Farias ST, Rêgo TG, José MV. tRNA core hypothesis for the transition between the RNA world to the ribonucleoprotein world. 2016 (submitted).

    Google Scholar 

  73. Agmon I, Bashan A, Yonath A. On ribosome conservation and evolution. Israel J Ecol Evol. 2006;52:359–74.

    Article  Google Scholar 

  74. Bloch D, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J. tRNA-rRNA sequence homologies: a model for the origin of a common ancestral molecule, and prospects for its reconstruction. Orig Life. 1984;14:571–8.

    Article  CAS  PubMed  Google Scholar 

  75. Caetano-Anollés G, Root-Bernstein R, Caetano-Anollés G. tRNA: building blocks of ribosomes and genomes. 2016 (submitted).

    Google Scholar 

  76. Yang S, Doolittle RF, Bourne PE. Phylogeny determined by protein domain content. Proc Natl Acad Sci USA. 2005;102:373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fang H, Oates ME, Pethica RB, Greenwood JM, Sardar AJ, Rackham OJ, Donoghue PC, Stamatakis A, de Lima Morais DA, Gough J. A daily-updated tree of (sequenced) life as a reference for genome research. Sci Rep. 2013;3:2015.

    Google Scholar 

  78. Edwards H, Abeln S, Deane CM. Exploring fold preferences of new-born and ancient protein superfamilies. PLoS Comput Biol. 2013;9:e1003325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Goldman AD, Bernhard TM, Dolzhenko E, Landweber LF. LUCApedia: a database for the study of ancient life. Nucleic Acids Res. 2013;41:D1079–82.

    Article  CAS  PubMed  Google Scholar 

  80. Kim KM, Nasir A, Caetano-Anollés G. The importance of using realistic evolutionary models for retrodicting proteomes. Biochimie. 2014;99:129–37.

    Article  CAS  PubMed  Google Scholar 

  81. Farris JS. Parsimony and explanatory power. Cladistics. 2008;24:1–23.

    Article  Google Scholar 

  82. Wächtershäuser G. In praise of error. J Mol Evol. 2016. doi:10.1007/s00239-015-9727-3.

    PubMed  Google Scholar 

Download references

Acknowledgments

Computational biology is supported by grants from NSF (OISE-1172791 and DBI-1041233) and USDA (ILLU-802-909) to GCA. DCA is the recipient of NSF postdoctoral fellowship award 1523549.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Derek Caetano-Anollés or Gustavo Caetano-Anollés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caetano-Anollés, D., Caetano-Anollés, G. (2016). The Phylogenomic Roots of Translation. In: Hernández, G., Jagus, R. (eds) Evolution of the Protein Synthesis Machinery and Its Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-39468-8_2

Download citation

Publish with us

Policies and ethics