Ribonucleoprotein Foci in Eukaryotes: How to Translate the Silence

  • Layana CarlaEmail author
  • Gonzalo H. Corujo
  • Rolando V. Rivera Pomar


The control of gene expression plays a key role in the regulation of cellular function; the life of an mRNA, from transcription to degradation, offers multiple control checkpoints. Transcription, splicing, and translation have been widely studied for many years; however, over the last few years, new mechanisms of post-transcriptional and post-translational control have arisen. They involve the regulation of mRNA metabolism in cytoplasmic foci that are composed of different ribonucleoprotein complexes, in most cases, still poorly characterized. These foci are named based on the presence of their main components. An ambitious goal is to know, at the biochemical level, how many different types of foci exist, how they are formed, how they interact with each other and with cytoplasmic organelles, and which functions they support. Here, we present an update of the processing bodies components and their known functions, postulating a hypothesis to understand their dynamics in vivo related to translational control. We focus on the Drosophila melanogaster ribonucleoprotein foci in the germline, during oogenesis and spermatogenesis, and how these granules are related to the spatial-temporal control of mRNAs that drive developmental programs. Finally, we discuss a model to understand the formation, disassembly, and dynamics of the foci.


Nurse Cell Fluorescent Recovery After Photobleaching Silence Pathway Polar Granule Cytoplasmic Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Smale ST, Baltimore D. The “initiator” as a transcription control element. Cell. 1989; 57:103–113. doi: Scholar
  2. 2.
    Weis L, Reinberg D. Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins. Mol Cell Biol. 1997;17:2973–84. doi: 10.1128/mcb.17.6.2973.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Struhl K. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell. 1999;98:1–4. doi: 10.1016/S0092-8674(00)80599-1.CrossRefPubMedGoogle Scholar
  4. 4.
    Butler JE, Kadonaga JT. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 2002;16:2583–92. doi: 10.1101/gad.1026202.CrossRefPubMedGoogle Scholar
  5. 5.
    Juven-Gershon T, Kadonaga JT. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev Biol. 2010;339:225–9. doi: 10.1016/j.ydbio.2009.08.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14. doi: 10.1038/nrg2290.CrossRefPubMedGoogle Scholar
  7. 7.
    Jackson RJ, Standart N. How Do MicroRNAs Regulate Gene Expression? Sci STKE. 2007; 2007:re1-. doi: 10.1126/stke.3672007re1.Google Scholar
  8. 8.
    Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8. doi: 10.1126/science.1138341.CrossRefPubMedGoogle Scholar
  9. 9.
    Eulalio A, Behm-Ansmant I, Izaurralde E. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol. 2007;8:9–22. doi: 10.1038/nrm2080.CrossRefPubMedGoogle Scholar
  10. 10.
    Hillebrand J, Barbee SA, Ramaswami M. P-body components, microRNA regulation, and synaptic plasticity. Sci World J. 2007;7:178–90. doi: 10.1100/tsw.2007.206.CrossRefGoogle Scholar
  11. 11.
    Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem Sci. 2008;33:141–50. doi: 10.1016/j.tibs.2007.12.003.CrossRefPubMedGoogle Scholar
  12. 12.
    Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. RNA granules in germ cells. Cold Spring Harb perspectives in biology. 2011; 3. doi: 10.1101/cshperspect.a002774.Google Scholar
  13. 13.
    Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol. 1997;136:761–73.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 2002;21:6915–24.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Eystathioy T, Jakymiw A, Chan EK, Seraphin B, Cougot N, Fritzler MJ. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 2003;9:1171–3. doi: 10.1261/rna.5810203.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science. 2003;300:805–8. doi: 10.1126/science.1082320.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brengues M, Teixeira D, Parker R. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science. 2005;310:486–9. doi: 10.1126/science.1115791.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Anderson P, Kedersha N. RNA granules. J Cell Biol. 2006;172:803–8. doi: 10.1083/jcb.200512082.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cougot N, Babajko S, Seraphin B. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol. 2004;165:31–40. doi: 10.1083/jcb.200309008.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Thomas MG, Loschi M, Desbats MA, Boccaccio GL. RNA granules: the good, the bad and the ugly. Cell Signal. 2011;23:324–34. doi: 10.1016/j.cellsig.2010.08.011.CrossRefPubMedGoogle Scholar
  21. 21.
    Cassola A. RNA granules living a post-transcriptional life: the trypanosomes’ case. Curr Chem Biol. 2011;5:108–17.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gallo CM, Munro E, Rasoloson D, Merritt C, Seydoux G. Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos. Dev Biol. 2008;323:76–87. doi: 10.1016/j.ydbio.2008.07.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Andrei MA, Ingelfinger D, Heintzmann R, Achsel T, Rivera-Pomar R, Luhrmann R. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA. 2005;11:717–27. doi: 10.1261/rna.2340405.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wilczynska A, Aigueperse C, Kress M, Dautry F, Weil D. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci. 2005;118:981–92. doi: 10.1242/jcs.01692.CrossRefPubMedGoogle Scholar
  25. 25.
    Neef DW, Thiele DJ. Enhancer of decapping proteins 1 and 2 are important for translation during heat stress in Saccharomyces cerevisiae. Mol Microbiol. 2009;73:1032–42. doi: 10.1111/j.1365-2958.2009.06827.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kshirsagar M, Parker R. Identification of Edc3p as an enhancer of mRNA decapping in Saccharomyces cerevisiae. Genetics. 2004;166:729–39.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tritschler F, Eulalio A, Truffault V, Hartmann MD, Helms S, Schmidt S, Coles M, Izaurralde E, Weichenrieder O. A divergent Sm fold in EDC3 proteins mediates DCP1 binding and P-body targeting. Mol Cell Biol. 2007;27:8600–11. doi: 10.1128/MCB.01506-07.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Behm-Ansmant I, Rehwinkel J, Izaurralde E. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol. 2006;71:523–30. doi: 10.1101/sqb.2006.71.013.CrossRefPubMedGoogle Scholar
  29. 29.
    Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell. 2005;20:905–15. doi: 10.1016/j.molcel.2005.10.031.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA. 2005;11:1795–802. doi: 10.1261/rna.2142405.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Scheller N, Resa-Infante P, de la Luna S, Galao RP, Albrecht M, Kaestner L, Lipp P, Lengauer T, Meyerhans A, Diez J. Identification of PatL1, a human homolog to yeast P body component Pat1. Biochim Biophys Acta. 2007;1773:1786–92. doi: 10.1016/j.bbamcr.2007.08.009.CrossRefPubMedGoogle Scholar
  32. 32.
    Leung AK, Calabrese JM, Sharp PA. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci U S A. 2006;103:18125–30. doi: 10.1073/pnas.0608845103.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ding L, Spencer A, Morita K, Han M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol Cell. 2005;19:437–47. doi: 10.1016/j.molcel.2005.07.013.CrossRefPubMedGoogle Scholar
  34. 34.
    Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T. Identification of novel argonaute-associated proteins. Curr Biol CB. 2005;15:2149–55. doi: 10.1016/j.cub.2005.10.048.CrossRefPubMedGoogle Scholar
  35. 35.
    Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 2005;169:871–84. doi: 10.1083/jcb.200502088.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yang WH, Yu JH, Gulick T, Bloch KD, Bloch DB. RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA. 2006;12:547–54. doi: 10.1261/rna.2302706.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol. 2008;183:441–55. doi: 10.1083/jcb.200807043.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG, Hutloff A, Giles KM, Leedman PJ, Lam KP, Goodnow CC, Vinuesa CG. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature. 2007;450:299–303. doi: 10.1038/nature06253.CrossRefPubMedGoogle Scholar
  39. 39.
    Rendl LM, Bieman MA, Smibert CAS. Cerevisiae Vts1p induces deadenylation-dependent transcript degradation and interacts with the Ccr4p-Pop2p-Not deadenylase complex. RNA. 2008;14:1328–36. doi: 10.1261/rna.955508.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng D, Ezzeddine N, Chen CY, Zhu W, He X, Shyu AB. Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol. 2008;182:89–101. doi: 10.1083/jcb.200801196.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Beckham C, Hilliker A, Cziko AM, Noueiry A, Ramaswami M, Parker R. The DEAD-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P-bodies. Mol Biol Cell. 2008;19:984–93. doi: 10.1091/mbc.E07-09-0954.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Takano K, Miki T, Katahira J, Yoneda Y. NXF2 is involved in cytoplasmic mRNA dynamics through interactions with motor proteins. Nucleic Acids Res. 2007;35:2513–21. doi: 10.1093/nar/gkm125.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Barbee SA, Estes PS, Cziko AM, Hillebrand J, Luedeman RA, Coller JM, Johnson N, Howlett IC, Geng C, Ueda R, Brand AH, Newbury SF, Wilhelm JE, Levine RB, Nakamura A, Parker R, Ramaswami M. Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron. 2006;52:997–1009. doi: 10.1016/j.neuron.2006.10.028.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Unterholzner L, Izaurralde E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol Cell. 2004;16:587–96. doi: 10.1016/j.molcel.2004.10.013.CrossRefPubMedGoogle Scholar
  45. 45.
    Sheth U, Parker R. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell. 2006;125:1095–109. doi: 10.1016/j.cell.2006.04.037.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Durand S, Cougot N, Mahuteau-Betzer F, Nguyen CH, Grierson DS, Bertrand E, Tazi J, Lejeune F. Inhibition of nonsense-mediated mRNA decay (NMD) by a new chemical molecule reveals the dynamic of NMD factors in P-bodies. J Cell Biol. 2007;178:1145–60. doi: 10.1083/jcb.200611086.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Stalder L, Muhlemann O. Processing bodies are not required for mammalian nonsense-mediated mRNA decay. RNA. 2009;15:1265–73. doi: 10.1261/rna.1672509.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Grousl T, Ivanov P, Frydlova I, Vasicova P, Janda F, Vojtova J, Malinska K, Malcova I, Novakova L, Janoskova D, Valasek L, Hasek J. Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci. 2009;122:2078–88. doi: 10.1242/jcs.045104.CrossRefPubMedGoogle Scholar
  49. 49.
    Ferraiuolo MA, Basak S, Dostie J, Murray EL, Schoenberg DR, Sonenberg N. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J Cell Biol. 2005;170:913–24. doi: 10.1083/jcb.200504039.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hoyle NP, Castelli LM, Campbell SG, Holmes LE, Ashe MP. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. J Cell Biol. 2007;179:65–74. doi: 10.1083/jcb.200707010.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Buchet-Poyau K, Courchet J, Le Hir H, Seraphin B, Scoazec JY, Duret L, Domon-Dell C, Freund JN, Billaud M. Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic Acids Res. 2007;35:1289–300. doi: 10.1093/nar/gkm016.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Courchet J, Buchet-Poyau K, Potemski A, Bres A, Jariel-Encontre I, Billaud M. Interaction with 14-3-3 adaptors regulates the sorting of hMex-3B RNA-binding protein to distinct classes of RNA granules. J Biol Chem. 2008;283:32131–42. doi: 10.1074/jbc.M802927200.CrossRefPubMedGoogle Scholar
  53. 53.
    Katahira J, Miki T, Takano K, Maruhashi M, Uchikawa M, Tachibana T, Yoneda Y. Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs. Nucleic Acids Res. 2008;36:616–28. doi: 10.1093/nar/gkm556.CrossRefPubMedGoogle Scholar
  54. 54.
    Fujimura K, Kano F, Murata M. Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies. RNA. 2008;14:425–31. doi: 10.1261/rna.780708.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Balzer E, Moss EG. Localization of the developmental timing regulator Lin28 to mRNP complexes, P-bodies and stress granules. RNA Biol. 2007;4:16–25.CrossRefPubMedGoogle Scholar
  56. 56.
    Tadauchi T, Inada T, Matsumoto K, Irie K. Posttranscriptional regulation of HO expression by the Mkt1-Pbp1 complex. Mol Cell Biol. 2004;24:3670–81.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Quaresma AJ, Bressan GC, Gava LM, Lanza DC, Ramos CH, Kobarg J. Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments. Exp Cell Res. 2009;315:968–80. doi: 10.1016/j.yexcr.2009.01.012.CrossRefPubMedGoogle Scholar
  58. 58.
    Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA. 2005;11:371–82. doi: 10.1261/rna.7258505.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Segal SP, Dunckley T, Parker R. Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26:5120–30. doi: 10.1128/MCB.01913-05.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lotan R, Bar-On VG, Harel-Sharvit L, Duek L, Melamed D, Choder M. The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev. 2005;19:3004–16. doi: 10.1101/gad.353205.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stribinskis V, Ramos KS. Rpm2p, a protein subunit of mitochondrial RNase P, physically and genetically interacts with cytoplasmic processing bodies. Nucleic Acids Res. 2007;35:1301–11. doi: 10.1093/nar/gkm023.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wichroski MJ, Robb GB, Rana TM. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2006;2:e41. doi: 10.1371/journal.ppat.0020041.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Peruquetti RL, de Mateo S, Sassone-Corsi P. Circadian proteins CLOCK and BMAL1 in the chromatoid body, a RNA processing granule of male germ cells. PLoS ONE. 2012;7:e42695. doi: 10.1371/journal.pone.0042695.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25:635–46. doi: 10.1016/j.molcel.2007.02.011.CrossRefPubMedGoogle Scholar
  65. 65.
    Rossi JJ. RNAi and the P-body connection. Nat Cell Biol. 2005;7:643–4.CrossRefPubMedGoogle Scholar
  66. 66.
    Eulalio A, Behm-Ansmant I, Schweizer D, Izaurralde E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol Cell Biol. 2007;27:3970–81. doi: 10.1128/MCB.00128-07.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol. 2004;11:121–7. doi: 10.1038/nsmb724.CrossRefPubMedGoogle Scholar
  68. 68.
    Lejeune F, Li X, Maquat LE. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol Cell. 2003;12:675–87.CrossRefPubMedGoogle Scholar
  69. 69.
    Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome. Nat Rev Mol Cell Biol. 2006;7:529–39.CrossRefPubMedGoogle Scholar
  70. 70.
    Coller J, Parker R. General translational repression by activators of mRNA decapping. Cell. 2005;122:875–86. doi: 10.1016/j.cell.2005.07.012.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell. 2010;39:773–83. doi: 10.1016/j.molcel.2010.08.025.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Conti E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol. 2005;17:316–25. doi: 10.1016/ Scholar
  73. 73.
    Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol. 2006;7:415–25. doi: 10.1038/nrm1942.CrossRefPubMedGoogle Scholar
  74. 74.
    Conti E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr Opin Cell Biol. 2005;17:316–25. doi: 10.1016/ Scholar
  75. 75.
    Lejeune F, Maquat LE. Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol. 2005;17:309–15. doi: 10.1016/ Scholar
  76. 76.
    Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol. 2006;7:415–25.CrossRefPubMedGoogle Scholar
  77. 77.
    Cao D, Parker R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell. 2003;113:533–45.CrossRefPubMedGoogle Scholar
  78. 78.
    Chen CY, Shyu AB. Rapid deadenylation triggered by a nonsense codon precedes decay of the RNA body in a mammalian cytoplasmic nonsense-mediated decay pathway. Mol Cell Biol. 2003;23:4805–13.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Couttet P, Grange T. Premature termination codons enhance mRNA decapping in human cells. Nucleic Acids Res. 2004;32:488–94. doi: 10.1093/nar/gkh218.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gatfield D, Izaurralde E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature. 2004; 429:575–578. doi:
  81. 81.
    Mitchell P, Tollervey D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′– > 5′ degradation. Mol Cell. 2003;11:1405–13.CrossRefPubMedGoogle Scholar
  82. 82.
    Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell. 2005;122:17–20. doi: 10.1016/j.cell.2005.06.023.CrossRefPubMedGoogle Scholar
  83. 83.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  84. 84.
    Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 2006;20:1885–98. doi: 10.1101/gad.1424106.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Eystathioy T, Chan EK, Tenenbaum SA, Keene JD, Griffith K, Fritzler MJ. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell. 2002;13:1338–51. doi: 10.1091/mbc.01-11-0544.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005;7:719–23. doi: 10.1038/ncb1274.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Wilhelm JE, Buszczak M, Sayles S. Efficient protein trafficking requires trailer hitch, a component of a ribonucleoprotein complex localized to the ER in Drosophila. Dev Cell. 2005;9:675–85. doi: 10.1016/j.devcel.2005.09.015.CrossRefPubMedGoogle Scholar
  88. 88.
    Kilchert C, Weidner J, Prescianotto-Baschong C, Spang A. Defects in the secretory pathway and high Ca2 + induce multiple P-bodies. Mol Biol Cell. 2010;21:2624–38. doi: 10.1091/mbc.E10-02-0099.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Huang L, Mollet S, Souquere S, Le Roy F, Ernoult-Lange M, Pierron G, Dautry F, Weil D. Mitochondria associate with P-bodies and modulate microRNA-mediated RNA interference. J Biol Chem. 2011;286:24219–30. doi: 10.1074/jbc.M111.240259.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Chang W, Zaarour RF, Reck-Peterson S, Rinn J, Singer RH, Snyder M, Novick P, Mooseker MS. Myo2p, a class V myosin in budding yeast, associates with a large ribonucleic acid-protein complex that contains mRNAs and subunits of the RNA-processing body. RNA. 2008;14:491–502. doi: 10.1261/rna.665008.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Loschi M, Leishman CC, Berardone N, Boccaccio GL. Dynein and kinesin regulate stress-granule and P-body dynamics. J Cell Sci. 2009;122:3973–82. doi: 10.1242/jcs.051383.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kiebler MA, Bassell GJ. Neuronal RNA granules: movers and makers. Neuron. 2006;51:685–90. doi: 10.1016/j.neuron.2006.08.021.CrossRefPubMedGoogle Scholar
  93. 93.
    Thomas MG. Martinez Tosar LJ, Desbats MA, Leishman CC, Boccaccio GL. Mammalian Staufen 1 is recruited to stress granules and impairs their assembly. J Cell Sci. 2009;122:563–73. doi: 10.1242/jcs.038208.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Pimentel J, Boccaccio GL. Translation and silencing in RNA granules: a tale of sand grains. Front Mol Neurosci. 2014;7:68. doi: 10.3389/fnmol.2014.00068.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Buchan JR. mRNP granules. Assembly, function, and connections with disease. RNA Biol. 2014; 11:1019–1030. doi: 10.4161/15476286.2014.972208.Google Scholar
  96. 96.
    Kloc M, Etkin LD. RNA localization mechanisms in oocytes. J Cell Sci. 2005;118:269–82. doi: 10.1242/jcs.01637.CrossRefPubMedGoogle Scholar
  97. 97.
    Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 2001;7:1717–27.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ladomery M, Wade E, Sommerville J. Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res. 1997;25:965–73.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Nakamura A, Amikura R, Hanyu K, Kobayashi S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development. 2001;128:3233–42.PubMedGoogle Scholar
  100. 100.
    Navarro RE, Shim EY, Kohara Y, Singson A, Blackwell TK. cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development. 2001; 128:3221–3232.Google Scholar
  101. 101.
    Layana C, Ferrero P, Rivera-Pomar R. Cytoplasmic Ribonucleoprotein Foci in Eukaryotes: Hotspots of Bio(chemical)Diversity. Comp Funct Genomics. 2012;2012:504292. doi: 10.1155/2012/504292.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Cougot N, Bhattacharyya SN, Tapia-Arancibia L, Bordonne R, Filipowicz W, Bertrand E, Rage F. Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation. J Neurosci Official J Soc Neurosci. 2008;28:13793–804. doi: 10.1523/JNEUROSCI.4155-08.2008.CrossRefGoogle Scholar
  103. 103.
    di Penta A, Mercaldo V, Florenzano F, Munck S, Ciotti MT, Zalfa F, Mercanti D, Molinari M, Bagni C, Achsel T. Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol. 2009;184:423–35. doi: 10.1083/jcb.200807033.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH, Shav-Tal Y. The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell. 2008;19:4154–66. doi: 10.1091/mbc.E08-05-0513.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Mollet S, Cougot N, Wilczynska A, Dautry F, Kress M, Bertrand E, Weil D. Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell. 2008;19:4469–79. doi: 10.1091/mbc.E08-05-0499.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Balagopal V, Parker R. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol. 2009;21:403–8. doi: 10.1016/ Scholar
  107. 107.
    Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol Cell. 2009;36:932–41. doi: 10.1016/j.molcel.2009.11.020.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ferrero PV, Layana C, Paulucci E, Gutierrez P, Hernandez G, Rivera-Pomar RV. Cap binding-independent recruitment of eIF4E to cytoplasmic foci. Biochim Biophys Acta. 2012;1823:1217–24. doi: 10.1016/j.bbamcr.2012.03.013.CrossRefPubMedGoogle Scholar
  109. 109.
    Mahowald AP. Polar granules of drosophila. IV. Cytochemical studies showing loss of RNA from polar granules during early stages of embryogenesis. The. J Exp Zool. 1971;176:345–52. doi: 10.1002/jez.1401760309.CrossRefPubMedGoogle Scholar
  110. 110.
    Tadros W, Lipshitz HD. Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn Official Pub Am Assoc Anat. 2005;232:593–608. doi: 10.1002/dvdy.20297.Google Scholar
  111. 111.
    Mahowald AP. Assembly of the drosophila germ plasm. Int Rev Cytol. 2001;203:187–213.CrossRefPubMedGoogle Scholar
  112. 112.
    Spradling AC. Germline cysts: communes that work. Cell. 1993;72:649–51.CrossRefPubMedGoogle Scholar
  113. 113.
    Nakamura A, Amikura R, Hanyu K, Kobayashi S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development. 2001;128:3233–42.PubMedGoogle Scholar
  114. 114.
    Lasko P. mRNA Localization and Translational Control in Drosophila Oogenesis. Cold Spring Harb Perspect Biol. 2012;4:a012294. doi: 10.1101/cshperspect.a012294.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Nakamura A, Sato K, Hanyu-Nakamura K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell. 2004;6:69–78.CrossRefPubMedGoogle Scholar
  116. 116.
    Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, Lasko P, Sonenberg N. A new paradigm for translational control: inhibition via 5′-3′ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell. 2005;121:411–23. doi: 10.1016/j.cell.2005.02.024.CrossRefPubMedGoogle Scholar
  117. 117.
    White-Cooper H. Tissue, cell type and stage-specific ectopic gene expression and RNAi induction in the Drosophila testis. Spermatogenesis. 2012;2:11–22. doi: 10.4161/spmg.19088.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Hernandez G, Han H, Gandin V, Fabian L, Ferreira T, Zuberek J, Sonenberg N, Brill JA, Lasko P. Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in Drosophila. Development. 2012;139:3211–20. doi: 10.1242/dev.073122.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ghosh S, Lasko P. Loss-of-function analysis reveals distinct requirements of the translation initiation factors eIF4E, eIF4E-3, eIF4G and eIF4G2 in Drosophila spermatogenesis. PLoS ONE. 2015;10:e0122519. doi: 10.1371/journal.pone.0122519.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Franks TM, Lykke-Andersen J. The control of mRNA decapping and P-body formation. Mol Cell. 2008;32:605–15. doi: 10.1016/j.molcel.2008.11.001.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Layana Carla
    • 1
    • 2
    Email author
  • Gonzalo H. Corujo
    • 1
    • 2
  • Rolando V. Rivera Pomar
    • 1
    • 3
  1. 1.Centro Regional de Estudios Genómicos, Facultad Cs. ExactasUNLPLa PlataArgentina
  2. 2.Universidad Nacional de AvellanedaBuenos AiresArgentina
  3. 3.Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA)Universidad Nacional del NO de BA, CIC-BA, CONICETBuenos AiresArgentina

Personalised recommendations