Skip to main content

Evolutionary Aspects of Translation Regulation During Abiotic Stress and Development in Plants

  • Chapter
  • First Online:
Book cover Evolution of the Protein Synthesis Machinery and Its Regulation

Abstract

In the last decade, different studies have highlighted the importance translational control in plant development and in response to environmental cues. Although most translation factors are conserved in plants, our current knowledge about translation regulation in this kingdom is still scarce. This chapter will outline the mechanisms controlling the selective translation of mRNAs under different abiotic stresses and developmental conditions in several eukaryotic model systems, discussing whether similar or specific mechanisms exist in plants.

R. Toribio, A. Muñoz and A. B. Castro-Sanz have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hernandez G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev. 2005;122:865–76. doi:10.1016/j.mod.2005.04.002.

    Article  CAS  PubMed  Google Scholar 

  2. Hernandez G, Altmann M, Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci. 2010;35:63–73. doi:10.1016/j.tibs.2009.10.009.

    Article  CAS  PubMed  Google Scholar 

  3. Hernandez G, Proud CG, Preiss T, Parsyan A. On the diversification of the translation apparatus across eukaryotes. Comp Funct Genomics. 2012;2012:256848. doi:10.1155/2012/256848.

    PubMed  PubMed Central  Google Scholar 

  4. Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. The Arabidopsis book/Am Soc Plant Biol. 2015;13:e0176. doi:10.1199/tab.0176.

    Google Scholar 

  5. Sonenberg N, Hinnebusch AG. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell. 2009;136:731–45. doi:10.1016/j.cell.2009.01.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27. doi:10.1038/nrm2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aitken CE, Lorsch JR. A mechanistic overview of translation initiation in eukaryotes. Nat Struct Mol Biol. 2012;19:568–76. doi:10.1038/nsmb.2303.

    Article  CAS  PubMed  Google Scholar 

  8. Hershey JW, Sonenberg N, Mathews MB. Principles of translational control: an overview. Cold Spring Harbor perspectives in biology. 2012; 4. doi:10.1101/cshperspect.a011528.

    Google Scholar 

  9. Lomakin IB, Steitz TA. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature. 2013;500:307–11. doi:10.1038/nature12355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mead EJ, Masterton RJ, von der Haar T, Tuite MF, Smales CM. Control and regulation of mRNA translation. Biochem Soc Trans. 2014;42:151–4. doi:10.1042/BST20130259.

    Article  CAS  PubMed  Google Scholar 

  11. Muñoz A, Castellano MM. Regulation of translation initiation under abiotic stress conditions in plants: is it a conserved or not so conserved process among eukaryotes? Comp Funct Genomics. 2012;2012:8. doi:10.1155/2012/406357.

    Article  CAS  Google Scholar 

  12. Echevarria-Zomeno S, Yanguez E, Fernandez-Bautista N, Castro-Sanz AB, Ferrando A, Castellano MM. Regulation of Translation Initiation under Biotic and Abiotic Stresses. Int J Mol Sci. 14:4670–4683. doi:10.3390/ijms14034670.

    Google Scholar 

  13. Mayberry LK, Allen ML, Nitka KR, Campbell L, Murphy PA, Browning KS. Plant cap binding complexes eukaryotic initiation factors eIF4F and eIFiso4F: molecular specificity of subunit binding. J Biol Chem. 2011;. doi:10.1074/jbc.M111.280099.

    PubMed  PubMed Central  Google Scholar 

  14. Patrick RM, Browning KS. The eIF4F and eIFiso4F Complexes of plants: an evolutionary perspective. Comp Funct Genomics. 2012;2012:287814. doi:10.1155/2012/287814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mayberry LK, Allen ML, Nitka KR, Campbell L, Murphy PA, Browning KS. Plant cap-binding complexes eukaryotic initiation factors eIF4F and eIFISO4F: molecular specificity of subunit binding. J Biol Chem. 2011;286:42566–74. doi:10.1074/jbc.M111.280099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mayberry LK, Allen ML, Dennis MD, Browning KS. Evidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs. Plant Physiol. 2009;150:1844–54. doi:10.1104/pp.109.138438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gallie DR, Browning KS. eIF4G functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs. J Biol Chem. 2001;276:36951–60. doi:10.1074/jbc.M103869200.

    Article  CAS  PubMed  Google Scholar 

  18. Mader S, Lee H, Pause A, Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995;15:4990–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell. 1999;3:707–16.

    Article  CAS  PubMed  Google Scholar 

  20. Altmann M, Schmitz N, Berset C, Trachsel H. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. The EMBO journal. 1997;16:1114–21. doi:10.1093/emboj/16.5.1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuo H, Li H, McGuire AM, Fletcher CM, Gingras AC, Sonenberg N, Wagner G. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nature structural biology. 1997;4:717–24.

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqui N, Sonenberg N. Signalling to eIF4E in cancer. Biochem Soc Trans. 2015;43:763–72. doi:10.1042/BST20150126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clemens MJ. Translational regulation in cell stress and apoptosis. Roles of the eIF4E binding proteins. J Cell Mol Med. 2001; 5:221–239. doi:005.003.01

    Google Scholar 

  24. Rhoads RE. eIF4E: new family members, new binding partners, new roles. J Biol Chem. 2009;284:16711–5. doi:10.1074/jbc.R900002200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carrera AC. TOR signaling in mammals. J Cell Sci. 2004;117:4615–6. doi:10.1242/jcs.01311.

    Article  CAS  PubMed  Google Scholar 

  26. Kneller EL, Rakotondrafara AM, Miller WA. Cap-independent translation of plant viral RNAs. Virus Res. 2006;119:63–75. doi:10.1016/j.virusres.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  27. Mardanova ES, Zamchuk LA, Skulachev MV, Ravin NV. The 5′ untranslated region of the maize alcohol dehydrogenase gene contains an internal ribosome entry site. Gene. 2008;420:11–6. doi:10.1016/j.gene.2008.04.008.

    Article  CAS  PubMed  Google Scholar 

  28. Dinkova TD, Zepeda H, Martinez-Salas E, Martinez LM, Nieto-Sotelo J, de Jimenez ES. Cap-independent translation of maize Hsp101. Plant J. 2005;41:722–31. doi:10.1111/j.1365-313X.2005.02333.x.

    Article  CAS  PubMed  Google Scholar 

  29. Cui Y, Rao S, Chang B, Wang X, Zhang K, Hou X, Zhu X, Wu H, Tian Z, Zhao Z, Yang C, Huang T. AtLa1 protein initiates IRES-dependent translation of WUSCHEL mRNA and regulates the stem cell homeostasis of Arabidopsis in response to environmental hazards. Plant, Cell Environ. 2015;38:2098–114. doi:10.1111/pce.12535.

    Article  CAS  Google Scholar 

  30. Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, Bedu M, Robaglia C, Meyer C. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 2007;8:864–70. doi:10.1038/sj.embor.7401043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, Willmitzer L, Giavalisco P. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J. 2013;73:897–909. doi:10.1111/tpj.12080.

    Article  CAS  PubMed  Google Scholar 

  32. Dobrenel T, Marchive C, Azzopardi M, Clement G, Moreau M, Sormani R, Robaglia C, Meyer C. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front Plant Sci. 2013;4:93. doi:10.3389/fpls.2013.00093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Robaglia C, Thomas M, Meyer C. Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol. 2012;15:301–7. doi:10.1016/j.pbi.2012.01.012.

    Article  CAS  PubMed  Google Scholar 

  34. Xiong Y, Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem. 2012;287:2836–42. doi:10.1074/jbc.M111.300749.

    Article  CAS  PubMed  Google Scholar 

  35. Richter JD, Sonenberg N. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature. 2005;433:477–80. doi:10.1038/nature03205.

    Article  CAS  PubMed  Google Scholar 

  36. Vardy L, Orr-Weaver TL. Regulating translation of maternal messages: multiple repression mechanisms. Trends Cell Biol. 2007;17:547–54. doi:10.1016/j.tcb.2007.09.002.

    Article  CAS  PubMed  Google Scholar 

  37. Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell. 1999;4:1017–27.

    Article  CAS  PubMed  Google Scholar 

  38. Richter JD. CPEB: a life in translation. Trends Biochem Sci. 2007;32:279–85. doi:10.1016/j.tibs.2007.04.004.

    Article  CAS  PubMed  Google Scholar 

  39. Wells DG. RNA-binding proteins: a lesson in repression. J Neurosci Official J Soc Neurosci. 2006;26:7135–8. doi:10.1523/JNEUROSCI.1795-06.2006.

    Article  CAS  Google Scholar 

  40. Jung MY, Lorenz L, Richter JD. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol. 2006;26:4277–87. doi:10.1128/MCB.02470-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nelson MR, Leidal AM, Smibert CA. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. The EMBO J. 2004;23:150–9. doi:10.1038/sj.emboj.7600026.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura A, Sato K, Hanyu-Nakamura K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell. 2004;6:69–78.

    Article  CAS  PubMed  Google Scholar 

  43. Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T, Bagni C. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008;134:1042–54. doi:10.1016/j.cell.2008.07.031.

    Article  CAS  PubMed  Google Scholar 

  44. Rom E, Kim HC, Gingras AC, Marcotrigiano J, Favre D, Olsen H, Burley SK, Sonenberg N. Cloning and characterization of 4EHP, a novel mammalian eIF4E-related cap-binding protein. J Biol Chem. 1998;273:13104–9.

    Article  CAS  PubMed  Google Scholar 

  45. Cho PF, Poulin F, Cho-Park YA, Cho-Park IB, Chicoine JD, Lasko P, Sonenberg N. A new paradigm for translational control: inhibition via 5’-3’ mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell. 2005;121:411–23. doi:10.1016/j.cell.2005.02.024.

    Article  CAS  PubMed  Google Scholar 

  46. Cho PF, Gamberi C, Cho-Park YA, Cho-Park IB, Lasko P, Sonenberg N. Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Current Biol CB. 2006;16:2035–41. doi:10.1016/j.cub.2006.08.093.

    Article  CAS  Google Scholar 

  47. Kim HS, Abbasi N, Choi SB. Bruno-like proteins modulate flowering time via 3’ UTR-dependent decay of SOC1 mRNA. New Phytol. 2013;198:747–56. doi:10.1111/nph.12181.

    Article  CAS  PubMed  Google Scholar 

  48. Francischini CW, Quaggio RB. Molecular characterization of Arabidopsis thaliana PUF proteins–binding specificity and target candidates. The FEBS J. 2009;276:5456–70. doi:10.1111/j.1742-4658.2009.07230.x.

    Article  CAS  PubMed  Google Scholar 

  49. Ruud KA, Kuhlow C, Goss DJ, Browning KS. Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem. 1998;273:10325–30.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol. 2002;22:6681–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol. 2002;18:575–99. doi:10.1146/annurev.cellbio.18.011402.160624.

    Article  CAS  PubMed  Google Scholar 

  52. Clemens MJ. PKR–a protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol. 1997; 29:945–949. doi:S1357-2725(96)00169-0

    Google Scholar 

  53. Chen JJ. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood. 2007;109:2693–9. doi:10.1182/blood-2006-08-041830.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhan K, Narasimhan J, Wek RC. Differential activation of eIF2 kinases in response to cellular stresses in Schizosaccharomyces pombe. Genetics. 2004;168:1867–75. doi:10.1534/genetics.104.031443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lageix S, Lanet E, Pouch-Pelissier MN, Espagnol MC, Robaglia C, Deragon JM, Pelissier T. Arabidopsis eIF2alpha kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biol. 2008;8:134. doi:10.1186/1471-2229-8-134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J Exp Bot. 2008;59:3131–41. doi:10.1093/jxb/ern169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shaikhin SM, Smailov SK, Lee AV, Kozhanov EV, Iskakov BK. Interaction of wheat germ translation initiation factor 2 with GDP and GTP. Biochimie. 1992;74:447–54.

    Article  CAS  PubMed  Google Scholar 

  58. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress Granule Assembly Is Mediated by Prion-like Aggregation of TIA-1. Mol Biol Cell. 2004;15:5383–98. doi:10.1091/mbc.E04-08-0715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Juntawong P, Sorenson R, Bailey-Serres J. Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana. Plant J. 2013;74:1016–28. doi:10.1111/tpj.12187.

    Article  CAS  PubMed  Google Scholar 

  60. Li CH, Ohn T, Ivanov P, Tisdale S, Anderson P. eIF5A promotes translation elongation, polysome disassembly and stress granule assembly. PLoS ONE. 2010;5:e9942. doi:10.1371/journal.pone.0009942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomas A, Goumans H, Amesz H, Benne R, Voorma HO. A Comparison of the Initiation Factors of Eukaryotic Protein Synthesis from Ribosomes and from the Postribosomal Supernatant. Eur J Biochem. 1979;98:329–37. doi:10.1111/j.1432-1033.1979.tb13192.x.

    Article  CAS  PubMed  Google Scholar 

  62. Saini P, Eyler DE, Green R, Dever TE. Hypusine-containing protein eIF5A promotes translation elongation. Nature. 2009;459:118–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dever TE, Gutierrez E, Shin B-S. The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol. 2014;49:413–25. doi:10.3109/10409238.2014.939608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Park M. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem. 2006;139:161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shiba T, Mizote H, Kaneko T, Nakajima T, Yasuo K, sano I. Hypusine, a new amino acid occurring in bovine brain: Isolation and structural determination. Biochim Biophys Acta (BBA)- General Subjects. 1971; 244:523–531.

    Google Scholar 

  66. Park MH, Wolff EC, Folk JE. Hypusine—its posttranslational formation in eukaryotic initiation factor-5A and its potential role in cellular-regulation. BioFactors. 1993;4:95–104.

    CAS  PubMed  Google Scholar 

  67. Chattopadhyay MK, Park MH, Tabor H. Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci. 2008;105:6554–9. doi:10.1073/pnas.0710970105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pällmann N, Braig M, Sievert H, Preukschas M, Hermans-Borgmeyer I, Schweizer M, Nagel CH, Neumann M, Wild P, Haralambieva E, Hagel C, Bokemeyer C, Hauber J, Balabanov S. Biological relevance and therapeutic potential of the hypusine modification system. J Biol Chem. 2015;290:18343–60. doi:10.1074/jbc.M115.664490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishimura K, Lee S, Park J, Park M. Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids. 2012;42:703–10. doi:10.1007/s00726-011-0986-z.

    Article  CAS  PubMed  Google Scholar 

  70. Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development. 2005;132:603–14.

    Article  CAS  PubMed  Google Scholar 

  71. Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T. Spermidine synthase genes are essential for survival of arabidopsis. Plant Physiol. 2004;135:1565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wolff EC, Kang KR, Kim YS, Park MH. Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids. 2007;33:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Navarre WW, Zou SB, Roy H, Xie JL, Savchenko A, Singer A, Edvokimova E, Prost LR, Kumar R, Ibba M, Fang FC. PoxA, YjeK, and elongation factor P coordinately modulate virulence and drug resistance in salmonella enterica. Mol Cell. 2010;39:209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lassak J, Keilhauer EC, Fürst M, Wuichet K, Gödeke J, Starosta AL, Chen J-M, Søgaard-Andersen L, Rohr J, Wilson DN, Häussler S, Mann M, Jung K. Arginine-rhamnosylation as new strategy to activate translation elongation factor P. Nat Chem Biol. 2015;11:266–70. doi:10.1038/nchembio.1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bullwinkle TJ, Zou SB, Rajkovic A, Hersch SJ, Elgamal S, Robinson N, Smil D, Bolshan Y, Navarre WW, Ibba M. (R)-β-Lysine-modified elongation factor P functions in translation elongation. J Biol Chem. 2013;288:4416–23. doi:10.1074/jbc.M112.438879.

    Article  CAS  PubMed  Google Scholar 

  76. Blaha G, Stanley RE, Steitz TA. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science. 2009;325:966–70. doi:10.1126/science.1175800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gutierrez E, Shin B-S, Woolstenhulme Christopher J, Kim J-R, Saini P, Buskirk Allen R, Dever Thomas E. eIF5A Promotes Translation of Polyproline Motifs. Mol Cell. 2013; 51:35-45. doi:10.1016/j.molcel.2013.04.021

    Google Scholar 

  78. Doerfel LK, Wohlgemuth I, Kothe C, Peske F, Urlaub H, Rodnina MV. EF-P Is essential for rapid synthesis of proteins containing consecutive proline residues. Science. 2013;339:85–8. doi:10.1126/science.1229017.

    Article  CAS  PubMed  Google Scholar 

  79. Ude S, Lassak J, Starosta AL, Kraxenberger T, Wilson DN, Jung K. Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science. 2013;339:82–5. doi:10.1126/science.1228985.

    Article  CAS  PubMed  Google Scholar 

  80. Li T, Belda-Palazon B, Ferrando A, Alepuz P. Fertility and polarized cell growth depends on eIF5A for translation of polyproline-rich formins in saccharomyces cerevisiae. Genetics. 2014;197:1191–200. doi:10.1534/genetics.114.166926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mandal A, Mandal S, Park MH. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS ONE. 2014;9:e111800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324:218–23. doi:10.1126/science.1168978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Elgamal S, Katz A, Hersch SJ, Newsom D, White P, Navarre WW, Ibba M. EF-P dependent pauses integrate proximal and distal signals during translation. PLoS Genet. 2014;10:e1004553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Woolstenhulme C, Guydosh N, Green R, Buskirk A. High-precision analysis of translational pausing by ribosome profiling in bacteria lacking EFP. Cell Reports. 2015;11:13–21. doi:10.1016/j.celrep.2015.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duguay J, Jamal S, Liu Z, Wang TW, Thompson JE. Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. J Plant Physiol. 2007;164:408–20.

    Article  CAS  PubMed  Google Scholar 

  86. Feng H, Chen Q, Feng J, Zhang J, Yang X, Zuo J. Functional characterization of the arabidopsis eukaryotic translation initiation factor 5A-2 that plays a crucial role in plant growth and development by regulating cell division, cell growth, and cell death. Plant Physiol. 2007;144:1531–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Z, Duguay J, Ma F, Wang TW, Tshin R, Hopkins MT, McNamara L, Thompson JE. Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. JExpBot. 2008;59:939–50.

    CAS  Google Scholar 

  88. Ma F, Liu Z, Wang TW, Hopkins MT, Peterson CA, Thompson JE. Arabidopsis eIF5A3 influences growth and the response to osmotic and nutrient stress. Plant Cell Environ. 2010;33:1682–96. doi:10.1111/j.1365-3040.2010.02173.x.

    Article  CAS  PubMed  Google Scholar 

  89. Belda-Palazón B, Nohales MA, Rambla JL, Aceña JL, Delgado O, Fustero S, Martínez MC, Granell A, Carbonell J, Ferrando A. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation. Front Plant Sci. 2014; 5. doi:10.3389/fpls.2014.00202.

  90. Zuk D, Jacobson A. A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. The EMBO J. 1998;17:2914–25. doi:10.1093/emboj/17.10.2914.

    Article  CAS  PubMed  Google Scholar 

  91. Ren B, Chen Q, Hong S, Zhao W, Feng J, Feng H, Zuo J. The arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling. Plant Cell. 2013;25:3841–57. doi:10.1105/tpc.113.116236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mar Castellano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toribio, R., Muñoz, A., Castro-Sanz, A.B., Ferrando, A., Berrocal-Lobo, M., Castellano, M.M. (2016). Evolutionary Aspects of Translation Regulation During Abiotic Stress and Development in Plants. In: Hernández, G., Jagus, R. (eds) Evolution of the Protein Synthesis Machinery and Its Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-39468-8_18

Download citation

Publish with us

Policies and ethics