Advertisement

Unique and Conserved Features of the Protein Synthesis Apparatus in Parasitic Trypanosomatid (Trypanosoma and Leishmania) Species

  • Osvaldo P. de Melo NetoEmail author
  • Christian R. S. Reis
  • Danielle M. N. Moura
  • Eden R. Freire
  • Mark Carrington
Chapter

Abstract

Trypanosomatids are flagellated protozoans that diverged very early on from the lineages leading to the other eukaryotic groups with the consequence that they have evolved separately for ~1 billion years. Pathogenic trypanosomatids, belonging mainly to Trypanosoma and Leishmania species, have been intensively studied, and there is a degree of understanding regarding their genome structure, mRNA synthesis and translation. A compilation of our knowledge of trypanosomatid protein synthesis is described here. Homologs of most known translation factors characterized in yeast, animals and plants have been clearly identified consistent with the presence of the core translation machinery in the last eukaryotic common ancestor. Further, lack of identification of a few absent factors may be more a consequence of too much divergence in sequences than due to a real absence. However, there has been an elaboration of function in trypanosomatids including: (1) an expansion in the number of homologs of eIF4F subunits, leading to several novel eIF4F-like complexes; (2) changes in cytoplasmic ribosome structure and in its rRNA scaffold; (3) novel mechanisms of mitochondrial tRNA import; (4) a unique mitochondrial ribosome; (5) a great number of hypothetical RNA-binding proteins of unknown function. Overall, and perhaps due to the post-transcriptional nature of the gene expression control in trypanosomatids, they consistently display novel mechanisms and features that deserve better attention and may clarify aspects of the eukaryotic protein synthesis apparatus in general.

Keywords

Stress Granule Bloodstream Form Mitochondrial Translation Trypanosoma Species Mitochondrial Ribosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work in trypanosomatid protein synthesis in OPDMN’s laboratory is currently funded with grants provided by the Brazilian funding agencies CNPq (480899/2013-4) and CAPES (23038.007656/2011-92). The authors would like to thank the Science Without Borders Program from the Brazilian government, maintained by CNPq and Capes, for funding and the ‘Special Visiting Researcher’ fellowship awarded to MC (401888/2013-4). ERF is a recipient of a ‘Young Talents’ award, also from the Science Without Borders Program (401282/2014-7).

References

  1. 1.
    Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J, et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest. 2008;118(4):1301–10.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Simpson AG, Stevens JR, Lukes J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Lukes J, Skalicky T, Tyc J, Votypka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22.CrossRefPubMedGoogle Scholar
  4. 4.
    Cecilio P, Perez-Cabezas B, Santarem N, Maciel J, Rodrigues V, Cordeiro da SA. Deception and manipulation: the arms of leishmania, a successful parasite. Front Immunol. 2014;5:480.Google Scholar
  5. 5.
    Lievin-Le Moal V, Loiseau PM. Leishmania hijacking of the macrophage intracellular compartments. FEBS J. 2016;283(4):598–607.Google Scholar
  6. 6.
    Dostalova A, Volf P. Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors. 2012;5:276.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309(5733):436–42.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309(5733):416–22.CrossRefPubMedGoogle Scholar
  9. 9.
    El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, et al. The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science. 2005;309(5733):409–15.CrossRefPubMedGoogle Scholar
  10. 10.
    Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38(Database issue):D457–D462.Google Scholar
  11. 11.
    Jackson AP. Genome evolution in trypanosomatid parasites. Parasitology. 2015;142(Suppl 1):S40–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Choi J, El-Sayed NM. Functional genomics of trypanosomatids. Parasite Immunol. 2012;34(2–3):72–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Teixeira SM, de Paiva RM, Kangussu-Marcolino MM, Darocha WD. Trypanosomatid comparative genomics: Contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol. 2012;35(1):1–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bartholomeu DC, de Paiva RM, Mendes TA, Darocha WD, Teixeira SM. Unveiling the intracellular survival gene kit of trypanosomatid parasites. PLoS Pathog. 2014;10(12):e1004399.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Daniels JP, Gull K, Wickstead B. Cell biology of the trypanosome genome. Microbiol Mol Biol Rev. 2010;74(4):552–69.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Martinez-Calvillo S, Vizuet-de-Rueda JC, Florencio-Martinez LE, Manning-Cela RG, Figueroa-Angulo EE. Gene expression in trypanosomatid parasites. J Biomed Biotechnol. 2010;2010:525241.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Alsford S, duBois K, Horn D, Field MC. Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med. 2012;14:e13.CrossRefPubMedGoogle Scholar
  18. 18.
    Muhich ML, Boothroyd JC. Polycistronic transcripts in trypanosomes and their accumulation during heat shock: evidence for a precursor role in mRNA synthesis. Mol Cell Biol. 1988;8(9):3837–46.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Campbell DA, Thomas S, Sturm NR. Transcription in kinetoplastid protozoa: why be normal? Microbes Infect. 2003;5(13):1231–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Liang XH, Haritan A, Uliel S, Michaeli S. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell. 2003;2(5):830–40.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gunzl A. The pre-mRNA splicing machinery of trypanosomes: complex or simplified? Eukaryot Cell. 2010;9(8):1159–70.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bangs JD, Crain PF, Hashizume T, McCloskey JA, Boothroyd JC. Mass spectrometry of mRNA cap 4 from trypanosomatids reveals two novel nucleosides. J Biol Chem. 1992;267(14):9805–15.PubMedGoogle Scholar
  23. 23.
    Zinoviev A, Shapira M. Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids. Comp Funct Genomics. 2012;2012:813718.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ouellette M, Papadopoulou B. Coordinated gene expression by post-transcriptional regulons in African trypanosomes. J Biol. 2009;8(11):100.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    De Gaudenzi JG, Noe G, Campo VA, Frasch AC, Cassola A. Gene expression regulation in trypanosomatids. Essays Biochem. 2011;51:31–46.CrossRefPubMedGoogle Scholar
  26. 26.
    Schwede A, Kramer S, Carrington M. How do trypanosomes change gene expression in response to the environment? Protoplasma. 2012;249(2):223–38.CrossRefPubMedGoogle Scholar
  27. 27.
    Kramer S. Developmental regulation of gene expression in the absence of transcriptional control: the case of kinetoplastids. Mol Biochem Parasitol. 2012;181(2):61–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Clayton CE. Networks of gene expression regulation in Trypanosoma brucei. Mol Biochem Parasitol. 2014;195(2):96–106.CrossRefPubMedGoogle Scholar
  29. 29.
    Clayton C, Adams M, Almeida R, Baltz T, Barrett M, Bastien P, et al. Genetic nomenclature for Trypanosoma and Leishmania. Mol Biochem Parasitol. 1998;97(1–2):221–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Hernandez G, Vazquez-Pianzola P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech Dev. 2005;122(7–8):865–76.CrossRefPubMedGoogle Scholar
  31. 31.
    Lorenzi HA, Vazquez MP, Levin MJ. The genes for a DEAH RNA helicase, a NifU like protein and the translation factor eIF6 constitute the SZ5 locus of Trypanosoma cruzi. Mol Biochem Parasitol. 2000;111(1):207–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Rezende AM, Assis LA, Nunes EC, da Costa Lima TD, Marchini FK, Freire ER, et al. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates–identification of conserved and divergent features based on orthologue analysis. BMC Genom. 2014;15:1175.CrossRefGoogle Scholar
  33. 33.
    Meleppattu S, Kamus-Elimeleh D, Zinoviev A, Cohen-Mor S, Orr I, Shapira M. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucleic Acids Res. 2015;43(13):6222–35.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zinoviev A, Leger M, Wagner G, Shapira M. A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways. Nucleic Acids Res. 2011;39(19):8404–15.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Urbaniak MD, Martin DM, Ferguson MA. Global quantitative SILAC phosphoproteomics reveals differential phosphorylation is widespread between the procyclic and bloodstream form lifecycle stages of Trypanosoma brucei. J Proteome Res. 2013 3;12(5):2233–44.Google Scholar
  36. 36.
    Guo J, Jin Z, Yang X, Li JF, Chen JG. Eukaryotic initiation factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation. Plant Signal Behav. 2011;6(5):766–71.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kakuta Y, Tahara M, Maetani S, Yao M, Tanaka I, Kimura M. Crystal structure of the regulatory subunit of archaeal initiation factor 2B (aIF2B) from hyperthermophilic archaeon Pyrococcus horikoshii OT3: a proposed structure of the regulatory subcomplex of eukaryotic IF2B. Biochem Biophys Res Commun. 2004;319(3):725–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Dev K, Santangelo TJ, Rothenburg S, Neculai D, Dey M, Sicheri F, et al. Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: Implications for aIF2B function and eIF2B regulation. J Mol Biol. 2009;392(3):701–22.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nett IR, Davidson L, Lamont D, Ferguson MA. Identification and specific localization of tyrosine-phosphorylated proteins in Trypanosoma brucei. Eukaryot Cell. 2009;8(4):617–26.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Moraes MC, Jesus TC, Hashimoto NN, Dey M, Schwartz KJ, Alves VS, et al. Novel membrane-bound eIF2alpha kinase in the flagellar pocket of Trypanosoma brucei. Eukaryot Cell. 2007;6(11):1979–91.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    da Silva Augusto L, Moretti NS, Ramos TC, de Jesus TC, Zhang M, Castilho BA, et al. A membrane-bound eIF2 alpha kinase located in endosomes is regulated by heme and controls differentiation and ROS levels in Trypanosoma cruzi. PLoS Pathog. 2015;11(2):e1004618.CrossRefGoogle Scholar
  42. 42.
    Chow C, Cloutier S, Dumas C, Chou MN, Papadopoulou B. Promastigote to amastigote differentiation of Leishmania is markedly delayed in the absence of PERK eIF2alpha kinase-dependent eIF2alpha phosphorylation. Cell Microbiol. 2011;13(7):1059–77.CrossRefPubMedGoogle Scholar
  43. 43.
    Tonelli RR, da Silva Augusto L, Castilho BA, Schenkman S. Protein synthesis attenuation by phosphorylation of eIF2alpha is required for the differentiation of Trypanosoma cruzi into infective forms. PLoS One. 2011;6(11):e27904.Google Scholar
  44. 44.
    Kramer S, Queiroz R, Ellis L, Webb H, Hoheisel JD, Clayton C, et al. Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2(alpha) phosphorylation at Thr169. J Cell Sci. 2008;121(Pt 18):3002–14.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hope R, Ben-Mayor E, Friedman N, Voloshin K, Biswas D, Matas D, et al. Phosphorylation of the TATA-binding protein activates the spliced leader silencing pathway in Trypanosoma brucei. Sci Signal. 2014;7(341):ra85.Google Scholar
  46. 46.
    Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, et al. Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J. 2011;25(2):515–25.CrossRefPubMedGoogle Scholar
  47. 47.
    Cloutier S, Laverdiere M, Chou MN, Boilard N, Chow C, Papadopoulou B. Translational control through eIF2alpha phosphorylation during the Leishmania differentiation process. PLoS ONE. 2012;7(5):e35085.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Zinoviev A, Manor S, Shapira M. Nutritional stress affects an atypical cap-binding protein in Leishmania. RNA Biol. 2012;9(12).Google Scholar
  49. 49.
    Klein C, Terrao M, Inchaustegui GD, Clayton C. Polysomes of Trypanosoma brucei: Association with Initiation Factors and RNA-Binding Proteins. PLoS ONE. 2015;10(8):e0135973.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Damoc E, Fraser CS, Zhou M, Videler H, Mayeur GL, Hershey JW, et al. Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol Cell Proteomics. 2007;6(7):1135–46.CrossRefPubMedGoogle Scholar
  51. 51.
    Dennis MD, Person MD, Browning KS. Phosphorylation of plant translation initiation factors by CK2 enhances the in vitro interaction of multifactor complex components. J Biol Chem. 2009;284(31):20615–28.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dhalia R, Reis CR, Freire ER, Rocha PO, Katz R, Muniz JR, et al. Translation initiation in Leishmania major: characterisation of multiple eIF4F subunit homologues. Mol Biochem Parasitol. 2005;140(1):23–41.CrossRefPubMedGoogle Scholar
  53. 53.
    Yoffe Y, Zuberek J, Lerer A, Lewdorowicz M, Stepinski J, Altmann M, et al. Binding specificities and potential roles of isoforms of eukaryotic initiation factor 4E in Leishmania. Eukaryot Cell. 2006;5(12):1969–79.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Clayton C, Shapira M. Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Mol Biochem Parasitol. 2007;156(2):93–101.CrossRefPubMedGoogle Scholar
  55. 55.
    Jagus R, Bachvaroff TR, Joshi B, Place AR. Diversity of eukaryotic translational initiation factor eIF4E in protists. Comp Funct Genomics. 2012;2012:134839.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, et al. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA. 2014;20(8):1272–86.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Skeiky YA, Guderian JA, Benson DR, Bacelar O, Carvalho EM, Kubin M, et al. A recombinant Leishmania antigen that stimulates human peripheral blood mononuclear cells to express a Th1-type cytokine profile and to produce interleukin 12. J Exp Med. 1995;181(4):1527–37.CrossRefPubMedGoogle Scholar
  58. 58.
    Skeiky YA, Kennedy M, Kaufman D, Borges MM, Guderian JA, Scholler JK, et al. LeIF: a recombinant Leishmania protein that induces an IL-12-mediated Th1 cytokine profile. J Immunol. 1998;161(11):6171–9.PubMedGoogle Scholar
  59. 59.
    Barhoumi M, Tanner NK, Banroques J, Linder P, Guizani I. Leishmania infantum LeIF protein is an ATP-dependent RNA helicase and an eIF4A-like factor that inhibits translation in yeast. FEBS J. 2006;273(22):5086–100.CrossRefPubMedGoogle Scholar
  60. 60.
    Dhalia R, Marinsek N, Reis CR, Katz R, Muniz JR, Standart N, et al. The two eIF4A helicases in Trypanosoma brucei are functionally distinct. Nucleic Acids Res. 2006;34(9):2495–507.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Le HH, Andersen GR. Structural insights into the exon junction complex. Curr Opin Struct Biol. 2008;18(1):112–9.CrossRefGoogle Scholar
  62. 62.
    Bercovich N, Levin MJ, Clayton C, Vazquez MP. Identification of core components of the exon junction complex in trypanosomes. Mol Biochem Parasitol. 2009;166(2):190–3.CrossRefPubMedGoogle Scholar
  63. 63.
    Freire ER, Dhalia R, Moura DM, da Costa Lima TD, Lima RP, Reis CR, et al. The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol Biochem Parasitol. 2011;176(1):25–36.CrossRefPubMedGoogle Scholar
  64. 64.
    Joshi B, Lee K, Maeder DL, Jagus R. Phylogenetic analysis of eIF4E-family members. BMC Evol Biol. 2005;5:48.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yoffe Y, Zuberek J, Lewdorowicz M, Zeira Z, Keasar C, Orr-Dahan I, et al. Cap-binding activity of an eIF4E homolog from Leishmania. RNA. 2004;10(11):1764–75.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lewdorowicz M, Yoffe Y, Zuberek J, Jemielity J, Stepinski J, Kierzek R, et al. Chemical synthesis and binding activity of the trypanosomatid cap-4 structure. RNA. 2004;10(9):1469–78.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yoffe Y, Leger M, Zinoviev A, Zuberek J, Darzynkiewicz E, Wagner G, et al. Evolutionary changes in the Leishmania eIF4F complex involve variations in the eIF4E-eIF4G interactions. Nucleic Acids Res. 2009;37(10):3243–53.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gupta N, Goyal N, Rastogi AK. In vitro cultivation and characterization of axenic amastigotes of Leishmania. Trends Parasitol. 2001;17(3):150–3.CrossRefPubMedGoogle Scholar
  69. 69.
    Erben ED, Fadda A, Lueong S, Hoheisel JD, Clayton C. A genome-wide tethering screen reveals novel potential post-transcriptional regulators in Trypanosoma brucei. PLoS Pathog. 2014;10(6):e1004178.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lueong S, Merce C, Fischer B, Hoheisel JD, Erben ED. Gene expression regulatory networks in Trypanosoma brucei: Insights into the role of the mRNA-binding proteome. Mol Microbiol. 2016.Google Scholar
  71. 71.
    Pereira MM, Malvezzi AM, Nascimento LM, da Costa Lima TD, Alves VS, Palma ML, et al. The eIF4E subunits of two distinct trypanosomatid eIF4F complexes are subjected to differential post-translational modifications associated to distinct growth phases in culture. Mol Biochem Parasitol. 2013;190(2):82–6.CrossRefPubMedGoogle Scholar
  72. 72.
    de Melo Neto OP, da Costa Lima TD, Xavier CC, Nascimento LM, Romao TP, Assis LA, et al. The unique Leishmania EIF4E4 N-terminus is a target for multiple phosphorylation events and participates in critical interactions required for translation initiation. RNA Biol. 2015;12(11):1209–21.Google Scholar
  73. 73.
    Moura DM, Reis CR, Xavier CC, da Costa Lima TD, Lima RP, Carrington M, et al. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation. RNA Biol. 2015;12(3):305–19.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer. Biochim Biophys Acta. 2015;1849(7):861–70.CrossRefPubMedGoogle Scholar
  75. 75.
    Freire ER, Malvezzi AM, Vashisht AA, Zuberek J, Saada EA, Langousis G, et al. Trypanosoma brucei Translation Initiation Factor Homolog EIF4E6 Forms a Tripartite Cytosolic Complex with EIF4G5 and a Capping Enzyme Homolog. Eukaryot Cell. 2014;13(7):896–908.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    da Costa Lima TD, Moura DM, Reis CR, Vasconcelos JR, Ellis L, Carrington M, et al. Functional characterization of three leishmania poly(a) binding protein homologues with distinct binding properties to RNA and protein partners. Eukaryot Cell. 2010;9(10):1484–94.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gile GH, Faktorova D, Castlejohn CA, Burger G, Lang BF, Farmer MA, et al. Distribution and phylogeny of EFL and EF-1alpha in Euglenozoa suggest ancestral co-occurrence followed by differential loss. PLoS ONE. 2009;4(4):e5162.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kamikawa R, Brown MW, Nishimura Y, Sako Y, Heiss AA, Yubuki N, et al. Parallel re-modeling of EF-1alpha function: divergent EF-1alpha genes co-occur with EFL genes in diverse distantly related eukaryotes. BMC Evol Biol. 2013;13:131.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Szabova J, Ruzicka P, Verner Z, Hampl V, Lukes J. Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: coexistence of mutually exclusive transcripts predates functional rescue. Mol Biol Evol. 2011;28(8):2371–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome Res. 2011;21(6):915–24.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Nandan D, Cherkasov A, Sabouti R, Yi T, Reiner NE. Molecular cloning, biochemical and structural analysis of elongation factor-1 alpha from Leishmania donovani: comparison with the mammalian homologue. Biochem Biophys Res Commun. 2003;302(4):646–52.CrossRefPubMedGoogle Scholar
  82. 82.
    Lopez M, Cherkasov A, Nandan D. Molecular architecture of leishmania EF-1alpha reveals a novel site that may modulate protein translation: a possible target for drug development. Biochem Biophys Res Commun. 2007;356(4):886–92.CrossRefPubMedGoogle Scholar
  83. 83.
    Nandan D, Lopez M, Ban F, Huang M, Li Y, Reiner NE, et al. Indel-based targeting of essential proteins in human pathogens that have close host orthologue(s): discovery of selective inhibitors for Leishmania donovani elongation factor-1alpha. Proteins. 2007;67(1):53–64.CrossRefPubMedGoogle Scholar
  84. 84.
    Greganova E, Butikofer P. Ethanolamine phosphoglycerol attachment to eEF1A is not essential for normal growth of Trypanosoma brucei. Sci Rep. 2012;2:254.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Eltschinger S, Greganova E, Heller M, Butikofer P, Altmann M. Eukaryotic translation elongation factor 1A (eEF1A) domain I from S. cerevisiae is required but not sufficient for inter-species complementation. PLoS ONE. 2012;7(7):e42338.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA. 2012;3(4):543–55.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Vickers TJ, Wyllie S, Fairlamb AH. Leishmania major elongation factor 1B complex has trypanothione S-transferase and peroxidase activity. J Biol Chem. 2004;279(47):49003–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Vickers TJ, Fairlamb AH. Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem. 2004;279(26):27246–56.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Smulski CR, Longhi SA, Ayub MJ, Edreira MM, Simonetti L, Gomez KA, et al. Interaction map of the Trypanosoma cruzi ribosomal P protein complex (stalk) and the elongation factor 2. J Mol Recognit. 2011;24(2):359–70.CrossRefPubMedGoogle Scholar
  90. 90.
    Chung J, Rocha AA, Tonelli RR, Castilho BA, Schenkman S. Eukaryotic initiation factor 5A dephosphorylation is required for translational arrest in stationary phase cells. Biochem J. 2013;451(2):257–67.CrossRefPubMedGoogle Scholar
  91. 91.
    Singh S, Raju K, Jatekar D, Dinesh N, Paul MS, Sobhia ME. Leishmania donovani eukaryotic initiation factor 5A: molecular characterization, localization and homology modelling studies. Microb Pathog. 2014;73:37–46.CrossRefPubMedGoogle Scholar
  92. 92.
    Nguyen S, Leija C, Kinch L, Regmi S, Li Q, Grishin NV, et al. Deoxyhypusine Modification of eukaryotic translation initiation factor 5A (eIF5A) is essential for Trypanosoma brucei growth and for expression of polyprolyl-containing proteins. J Biol Chem. 2015;290(32):19987–98.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chawla B, Jhingran A, Singh S, Tyagi N, Park MH, Srinivasan N, et al. Identification and characterization of a novel deoxyhypusine synthase in Leishmania donovani. J Biol Chem. 2010;285(1):453–63.CrossRefPubMedGoogle Scholar
  94. 94.
    Chawla B, Kumar RR, Tyagi N, Subramanian G, Srinivasan N, Park MH, et al. A unique modification of the eukaryotic initiation factor 5A shows the presence of the complete hypusine pathway in Leishmania donovani. PLoS ONE. 2012;7(3):e33138.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Nett IR, Martin DM, Miranda-Saavedra D, Lamont D, Barber JD, Mehlert A, et al. The phosphoproteome of bloodstream form Trypanosoma brucei, causative agent of African sleeping sickness. Mol Cell Proteomics. 2009;8(7):1527–38.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Dever TE, Gutierrez E, Shin BS. The hypusine-containing translation factor eIF5A. Crit Rev Biochem Mol Biol. 2014;49(5):413–25.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Inagaki Y, Ford DW. Evolution of the eukaryotic translation termination system: origins of release factors. Mol Biol Evol. 2000;17(6):882–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Inagaki Y, Blouin C, Doolittle WF, Roger AJ. Convergence and constraint in eukaryotic release factor 1 (eRF1) domain 1: the evolution of stop codon specificity. Nucleic Acids Res. 2002;30(2):532–44.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Inagaki Y, Blouin C, Susko E, Roger AJ. Assessing functional divergence in EF-1alpha and its paralogs in eukaryotes and archaebacteria. Nucleic Acids Res. 2003;31(14):4227–37.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Batista JA, Teixeira SM, Donelson JE, Kirchhoff LV, de Sa CM. Characterization of a Trypanosoma cruzi poly(A)-binding protein and its genes. Mol Biochem Parasitol. 1994;67(2):301–12.CrossRefPubMedGoogle Scholar
  101. 101.
    Pitula J, Ruyechan WT, Williams N. Trypanosoma brucei: identification and purification of a poly(A)-binding protein. Exp Parasitol. 1998;88(2):157–60.CrossRefPubMedGoogle Scholar
  102. 102.
    Hotchkiss TL, Nerantzakis GE, Dills SC, Shang L, Read LK. Trypanosoma brucei poly(A) binding protein I cDNA cloning, expression, and binding to 5 untranslated region sequence elements. Mol Biochem Parasitol. 1999;98(1):117–29.CrossRefPubMedGoogle Scholar
  103. 103.
    Bates EJ, Knuepfer E, Smith DF. Poly(A)-binding protein I of Leishmania: functional analysis and localisation in trypanosomatid parasites. Nucleic Acids Res. 2000;28(5):1211–20.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kramer S, Bannerman-Chukualim B, Ellis L, Boulden EA, Kelly S, Field MC, et al. Differential localization of the two T. brucei poly(A) binding proteins to the nucleus and RNP granules suggests binding to distinct mRNA pools. PLoS ONE. 2013;8(1):e54004.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Cassola A, De Gaudenzi JG, Frasch AC. Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol. 2007;65(3):655–70.CrossRefPubMedGoogle Scholar
  106. 106.
    Kramer S, Marnef A, Standart N, Carrington M. Inhibition of mRNA maturation in trypanosomes causes the formation of novel foci at the nuclear periphery containing cytoplasmic regulators of mRNA fate. J Cell Sci. 2012;125(Pt 12):2896–909.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Mittra B, Ray DS. Presence of a poly(A) binding protein and two proteins with cell cycle-dependent phosphorylation in Crithidia fasciculata mRNA cycling sequence binding protein II. Eukaryot Cell. 2004;3(5):1185–97.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    D’Orso I, Frasch AC. TcUBP-1, an mRNA destabilizing factor from trypanosomes, homodimerizes and interacts with novel AU-rich element- and Poly(A)-binding proteins forming a ribonucleoprotein complex. J Biol Chem. 2002;277(52):50520–8.CrossRefPubMedGoogle Scholar
  109. 109.
    Mani J, Guttinger A, Schimanski B, Heller M, costa-Serrano A, Pescher P, et al. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery. PLoS One. 2011;6(7):e22463.Google Scholar
  110. 110.
    Singh A, Minia I, Droll D, Fadda A, Clayton C, Erben E. Trypanosome MKT1 and the RNA-binding protein ZC3H11: interactions and potential roles in post-transcriptional regulatory networks. Nucleic Acids Res. 2014;42(7):4652–68.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    White TC, Rudenko G, Borst P. Three small RNAs within the 10 kb trypanosome rRNA transcription unit are analogous to domain VII of other eukaryotic 28S rRNAs. Nucleic Acids Res. 1986;14(23):9471–89.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Campbell DA, Kubo K, Clark CG, Boothroyd JC. Precise identification of cleavage sites involved in the unusual processing of trypanosome ribosomal RNA. J Mol Biol. 1987;196(1):113–24.CrossRefPubMedGoogle Scholar
  113. 113.
    Hartshorne T, Toyofuku W. Two 5’-ETS regions implicated in interactions with U3 snoRNA are required for small subunit rRNA maturation in Trypanosoma brucei. Nucleic Acids Res. 1999;27(16):3300–9.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Sakyiama J, Zimmer SL, Ciganda M, Williams N, Read LK. Ribosome biogenesis requires a highly diverged XRN family 5’-> 3’ exoribonuclease for rRNA processing in Trypanosoma brucei. RNA. 2013;19(10):1419–31.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Gao H, Ayub MJ, Levin MJ, Frank J. The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci USA. 2005;102(29):10206–11.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Hashem Y, des GA, Fu J, Buss SN, Jossinet F, Jobe A, et al. High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature. 2013;494(7437):385–9.Google Scholar
  117. 117.
    Levin MJ, Vazquez M, Kaplan D, Schijman AG. The Trypanosoma cruzi ribosomal P protein family: classification and antigenicity. Parasitol Today. 1993;9(10):381–4.CrossRefPubMedGoogle Scholar
  118. 118.
    Ayub MJ, Smulski CR, Nyambega B, Bercovich N, Masiga D, Vazquez MP, et al. Protein-protein interaction map of the Trypanosoma cruzi ribosomal P protein complex. Gene. 2005;357(2):129–36.CrossRefGoogle Scholar
  119. 119.
    Ayub MJ, Nyambega B, Simonetti L, Duffy T, Longhi SA, Gomez KA, et al. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2beta protein. PLoS ONE. 2012;7(5):e36233.CrossRefPubMedGoogle Scholar
  120. 120.
    Ayub MJ, Atwood J, Nuccio A, Tarleton R, Levin MJ. Proteomic analysis of the Trypanosoma cruzi ribosomal proteins. Biochem Biophys Res Commun. 2009;382(1):30–4.CrossRefPubMedGoogle Scholar
  121. 121.
    Ciganda M, Williams N. Characterization of a novel association between two trypanosome-specific proteins and 5S rRNA. PLoS ONE. 2012;7(1):e30029.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Umaer K, Ciganda M, Williams N. Ribosome biogenesis in african trypanosomes requires conserved and trypanosome-specific factors. Eukaryot Cell. 2014;13(6):727–37.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Tan TH, Pach R, Crausaz A, Ivens A, Schneider A. tRNAs in Trypanosoma brucei: genomic organization, expression, and mitochondrial import. Mol Cell Biol. 2002;22(11):3707–17.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Padilla-Mejia NE, Florencio-Martinez LE, Figueroa-Angulo EE, Manning-Cela RG, Hernandez-Rivas R, Myler PJ, et al. Gene organization and sequence analyses of transfer RNA genes in Trypanosomatid parasites. BMC Genom. 2009;10:232.CrossRefGoogle Scholar
  125. 125.
    Horn D. Codon usage suggests that translational selection has a major impact on protein expression in trypanosomatids. BMC Genom. 2008;9:2.CrossRefGoogle Scholar
  126. 126.
    Cassago A, Rodrigues EM, Prieto EL, Gaston KW, Alfonzo JD, Iribar MP, et al. Identification of Leishmania selenoproteins and SECIS element. Mol Biochem Parasitol. 2006;149(2):128–34.CrossRefPubMedGoogle Scholar
  127. 127.
    Lobanov AV, Gromer S, Salinas G, Gladyshev VN. Selenium metabolism in Trypanosoma: characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein. Nucleic Acids Res. 2006;34(14):4012–24.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Geslain R, Aeby E, Guitart T, Jones TE, de Castro MM, Charriere F, et al. Trypanosoma seryl-tRNA synthetase is a metazoan-like enzyme with high affinity for tRNASec. J Biol Chem. 2006;281(50):38217–25.CrossRefPubMedGoogle Scholar
  129. 129.
    Aeby E, Seidel V, Schneider A. The selenoproteome is dispensable in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 2009;168(2):191–3.CrossRefPubMedGoogle Scholar
  130. 130.
    Aeby E, Palioura S, Pusnik M, Marazzi J, Lieberman A, Ullu E, et al. The canonical pathway for selenocysteine insertion is dispensable in Trypanosomes. Proc Natl Acad Sci USA. 2009;106(13):5088–92.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Aeby E, Ullu E, Yepiskoposyan H, Schimanski B, Roditi I, Muhlemann O, et al. tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans. Nucleic Acids Res. 2010;38(17):5833–43.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Padilla-Mejia NE, Florencio-Martinez LE, Moreno-Campos R, Vizuet-de-Rueda JC, Cevallos AM, Hernandez-Rivas R, et al. The selenocysteine tRNA gene in Leishmania major is transcribed by both RNA polymerase II and RNA polymerase III. Eukaryot Cell. 2015;14(3):216–27.CrossRefPubMedGoogle Scholar
  133. 133.
    Cestari I, Kalidas S, Monnerat S, Anupama A, Phillips MA, Stuart K. A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol. 2013;33(24):4872–88.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Gowri VS, Ghosh I, Sharma A, Madhubala R. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genom. 2012;13:621.CrossRefGoogle Scholar
  135. 135.
    Kalidas S, Cestari I, Monnerat S, Li Q, Regmi S, Hasle N, et al. Genetic validation of aminoacyl-tRNA synthetases as drug targets in Trypanosoma brucei. Eukaryot Cell. 2014;13(4):504–16.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Simpson L, Thiemann OH, Savill NJ, Alfonzo JD, Maslov DA. Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci U S A. 2000;97(13):6986–93.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA. 2003;9(3):265–76.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Mukherjee S, Basu S, Home P, Dhar G, Adhya S. Necessary and sufficient factors for the import of transfer RNA into the kinetoplast mitochondrion. EMBO Rep. 2007;8(6):589–95.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Schneider A. Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu Rev Biochem. 2011;80:1033–53.CrossRefPubMedGoogle Scholar
  140. 140.
    Bouzaidi-Tiali N, Aeby E, Charriere F, Pusnik M, Schneider A. Elongation factor 1a mediates the specificity of mitochondrial tRNA import in T. brucei. EMBO J. 2007;26(20):4302–12.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Seidman D, Johnson D, Gerbasi V, Golden D, Orlando R, Hajduk S. Mitochondrial membrane complex that contains proteins necessary for tRNA import in Trypanosoma brucei. J Biol Chem. 2012;287(12):8892–903.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Charriere F, O’Donoghue P, Helgadottir S, Marechal-Drouard L, Cristodero M, Horn EK, et al. Dual targeting of a tRNAAsp requires two different aspartyl-tRNA synthetases in Trypanosoma brucei. J Biol Chem. 2009;284(24):16210–7.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Niemann M, Schneider A, Cristodero M. Mitochondrial translation in trypanosomatids: a novel target for chemotherapy? Trends Parasitol. 2011;27(10):429–33.CrossRefPubMedGoogle Scholar
  144. 144.
    Charriere F, Helgadottir S, Horn EK, Soll D, Schneider A. Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei. Proc Natl Acad Sci USA. 2006;103(18):6847–52.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Cristodero M, Seebeck T, Schneider A. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol Microbiol. 2010;78(3):757–69.CrossRefPubMedGoogle Scholar
  146. 146.
    Tan TH, Bochud-Allemann N, Horn EK, Schneider A. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria. Proc Natl Acad Sci USA. 2002;99(3):1152–7.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Charriere F, Tan TH, Schneider A. Mitochondrial initiation factor 2 of Trypanosoma brucei binds imported formylated elongator-type tRNA(Met). J Biol Chem. 2005;280(16):15659–65.CrossRefPubMedGoogle Scholar
  148. 148.
    Cristodero M, Mani J, Oeljeklaus S, Aeberhard L, Hashimi H, Ramrath DJ, et al. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function. Mol Microbiol. 2013;90(4):744–55.CrossRefPubMedGoogle Scholar
  149. 149.
    Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci USA. 2009;106(24):9637–42.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Ridlon L, Skodova I, Pan S, Lukes J, Maslov DA. The importance of the 45 S ribosomal small subunit-related complex for mitochondrial translation in Trypanosoma brucei. J Biol Chem. 2013;288(46):32963–78.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Zikova A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, Ogata Y, et al. Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics. 2008;7(7):1286–96.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Fernandez-Moya SM, Estevez AM. Posttranscriptional control and the role of RNA-binding proteins in gene regulation in trypanosomatid protozoan parasites. Wiley Interdiscip Rev RNA. 2010;1(1):34–46.PubMedGoogle Scholar
  153. 153.
    Kramer S, Kimblin NC, Carrington M. Genome-wide in silico screen for CCCH-type zinc finger proteins of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. BMC Genom. 2010;11:283.CrossRefGoogle Scholar
  154. 154.
    Kramer S, Carrington M. Trans-acting proteins regulating mRNA maturation, stability and translation in trypanosomatids. Trends Parasitol. 2011;27(1):23–30.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Gargantini PR, Lujan HD, Pereira CA. In silico analysis of trypanosomatids’ helicases. FEMS Microbiol Lett. 2012;335(2):123–9.CrossRefPubMedGoogle Scholar
  156. 156.
    Clayton C. The regulation of trypanosome gene expression by RNA-binding proteins. PLoS Pathog. 2013;9(11):e1003680.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Missel A, Norskau G, Shu HH, Goringer HU. A putative RNA helicase of the DEAD box family from Trypanosoma brucei. Mol Biochem Parasitol. 1995;75(1):123–6.CrossRefPubMedGoogle Scholar
  158. 158.
    Marchat LA, rzola-Rodriguez SI, Hernandez-de la CO, Lopez-Rosas I, Lopez-Camarillo C. DEAD/DExH-Box RNA helicases in selected human parasites. Korean J Parasitol. 2015;53(5):583–95.Google Scholar
  159. 159.
    Linder P. Dead-box proteins: a family affair–active and passive players in RNP-remodeling. Nucleic Acids Res. 2006;34(15):4168–80.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Zinoviev A, Akum Y, Yahav T, Shapira M. Gene duplication in trypanosomatids—Two DED1 paralogs are functionally redundant and differentially expressed during the life cycle. Mol Biochem Parasitol. 2012;185(2):127–36.CrossRefPubMedGoogle Scholar
  161. 161.
    Padmanabhan PK, Samant M, Cloutier S, Simard MJ, Papadopoulou B. Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania. Cell Death Differ. 2012;19(12):1972–82.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Holetz FB, Correa A, Avila AR, Nakamura CV, Krieger MA, Goldenberg S. Evidence of P-body-like structures in Trypanosoma cruzi. Biochem Biophys Res Commun. 2007;356(4):1062–7.CrossRefPubMedGoogle Scholar
  163. 163.
    Holetz FB, Alves LR, Probst CM, Dallagiovanna B, Marchini FK, Manque P, et al. Protein and mRNA content of TcDHH1-containing mRNPs in Trypanosoma cruzi. FEBS J. 2010;277(16):3415–26.CrossRefPubMedGoogle Scholar
  164. 164.
    Kramer S, Queiroz R, Ellis L, Hoheisel JD, Clayton C, Carrington M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci. 2010;123(Pt 5):699–711.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Cristodero M, Schimanski B, Heller M, Roditi I. Functional characterization of the trypanosome translational repressor SCD6. Biochem J. 2014;457(1):57–67.CrossRefPubMedGoogle Scholar
  166. 166.
    De Gaudenzi J, Frasch AC, Clayton C. RNA-binding domain proteins in Kinetoplastids: a comparative analysis. Eukaryot Cell. 2005;4(12):2106–14.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Wurst M, Seliger B, Jha BA, Klein C, Queiroz R, Clayton C. Expression of the RNA recognition motif protein RBP10 promotes a bloodstream-form transcript pattern in Trypanosoma brucei. Mol Microbiol. 2012;83(5):1048–63.CrossRefPubMedGoogle Scholar
  168. 168.
    Kolev NG, Ramey-Butler K, Cross GA, Ullu E, Tschudi C. Developmental progression to infectivity in Trypanosoma brucei triggered by an RNA-binding protein. Science. 2012;338(6112):1352–3.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Najafabadi HS, Lu Z, MacPherson C, Mehta V, Adoue V, Pastinen T, et al. Global identification of conserved post-transcriptional regulatory programs in trypanosomatids. Nucleic Acids Res. 2013;41(18):8591–600.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Das A, Morales R, Banday M, Garcia S, Hao L, Cross GA, et al. The essential polysome-associated RNA-binding protein RBP42 targets mRNAs involved in Trypanosoma brucei energy metabolism. RNA. 2012;18(11):1968–83.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Gupta SK, Kosti I, Plaut G, Pivko A, Tkacz ID, Cohen-Chalamish S, et al. The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability. Nucleic Acids Res. 2013;41(13):6577–94.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    De Gaudenzi JG, D’Orso I, Frasch AC. RNA recognition motif-type RNA-binding proteins in Trypanosoma cruzi form a family involved in the interaction with specific transcripts in vivo. J Biol Chem. 2003;278(21):18884–94.CrossRefPubMedGoogle Scholar
  173. 173.
    Li ZH, De Gaudenzi JG, Alvarez VE, Mendiondo N, Wang H, Kissinger JC, et al. A 43-nucleotide U-rich element in 3’-untranslated region of large number of Trypanosoma cruzi transcripts is important for mRNA abundance in intracellular amastigotes. J Biol Chem. 2012;287(23):19058–69.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Hartmann C, Benz C, Brems S, Ellis L, Luu VD, Stewart M, et al. Small trypanosome RNA-binding proteins TbUBP1 and TbUBP2 influence expression of F-box protein mRNAs in bloodstream trypanosomes. Eukaryot Cell. 2007;6(11):1964–78.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Hartmann C, Clayton C. Regulation of a transmembrane protein gene family by the small RNA-binding proteins TbUBP1 and TbUBP2. Mol Biochem Parasitol. 2008;157(1):112–5.CrossRefPubMedGoogle Scholar
  176. 176.
    Estevez AM. The RNA-binding protein TbDRBD3 regulates the stability of a specific subset of mRNAs in trypanosomes. Nucleic Acids Res. 2008;36(14):4573–86.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Stern MZ, Gupta SK, Salmon-Divon M, Haham T, Barda O, Levi S, et al. Multiple roles for polypyrimidine tract binding (PTB) proteins in trypanosome RNA metabolism. RNA. 2009;15(4):648–65.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Fernandez-Moya SM, Garcia-Perez A, Kramer S, Carrington M, Estevez AM. Alterations in DRBD3 ribonucleoprotein complexes in response to stress in Trypanosoma brucei. PLoS ONE. 2012;7(11):e48870.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Das A, Bellofatto V, Rosenfeld J, Carrington M, Romero-Zaliz R, del VC, et al. High throughput sequencing analysis of Trypanosoma brucei DRBD3/PTB1-bound mRNAs. Mol Biochem Parasitol. 2015;199(1–2):1–4.Google Scholar
  180. 180.
    Hendriks EF, Robinson DR, Hinkins M, Matthews KR. A novel CCCH protein which modulates differentiation of Trypanosoma brucei to its procyclic form. EMBO J. 2001;20(23):6700–11.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Hendriks EF, Matthews KR. Disruption of the developmental programme of Trypanosoma brucei by genetic ablation of TbZFP1, a differentiation-enriched CCCH protein. Mol Microbiol. 2005;57(3):706–16.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Morking PA, Rampazzo RC, Walrad P, Probst CM, Soares MJ, Gradia DF, et al. The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis. Mem Inst Oswaldo Cruz. 2012;107(6):790–9.CrossRefPubMedGoogle Scholar
  183. 183.
    Paterou A, Walrad P, Craddy P, Fenn K, Matthews K. Identification and stage-specific association with the translational apparatus of TbZFP3, a CCCH protein that promotes trypanosome life-cycle development. J Biol Chem. 2006;281(51):39002–13.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Walrad PB, Capewell P, Fenn K, Matthews KR. The post-transcriptional trans-acting regulator, TbZFP3, co-ordinates transmission-stage enriched mRNAs in Trypanosoma brucei. Nucleic Acids Res. 2012;40(7):2869–83.CrossRefPubMedGoogle Scholar
  185. 185.
    Pasion SG, Hines JC, Ou X, Mahmood R, Ray DS. Sequences within the 5’ untranslated region regulate the levels of a kinetoplast DNA topoisomerase mRNA during the cell cycle. Mol Cell Biol. 1996;16(12):6724–35.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Brown LM, Ray DS. Cell cycle regulation of RPA1 transcript levels in the trypanosomatid Crithidia fasciculata. Nucleic Acids Res. 1997;25(16):3281–9.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Caro F, Bercovich N, Atorrasagasti C, Levin MJ, Vazquez MP. Trypanosoma cruzi: analysis of the complete PUF RNA-binding protein family. Exp Parasitol. 2006;113(2):112–24.CrossRefPubMedGoogle Scholar
  188. 188.
    Luu VD, Brems S, Hoheisel JD, Burchmore R, Guilbride DL, Clayton C. Functional analysis of Trypanosoma brucei PUF1. Mol Biochem Parasitol. 2006;150(2):340–9.CrossRefPubMedGoogle Scholar
  189. 189.
    Jha BA, Fadda A, Merce C, Mugo E, Droll D, Clayton C. Depletion of the Trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. Eukaryot Cell. 2014;13(5):664–74.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Dallagiovanna B, Correa A, Probst CM, Holetz F, Smircich P, de Aguiar AM, et al. Functional genomic characterization of mRNAs associated with TcPUF6, a pumilio-like protein from Trypanosoma cruzi. J Biol Chem. 2008;283(13):8266–73.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Droll D, Archer S, Fenn K, Delhi P, Matthews K, Clayton C. The trypanosome Pumilio-domain protein PUF7 associates with a nuclear cyclophilin and is involved in ribosomal RNA maturation. FEBS Lett. 2010;584(6):1156–62.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Schumann Burkard G, Kaser S, de Araujo PR, Schimanski B, Naguleswaran A, Knusel S, et al. Nucleolar proteins regulate stage-specific gene expression and ribosomal RNA maturation in Trypanosoma brucei. Mol Microbiol. 2013;88(4):827–40.Google Scholar
  193. 193.
    Archer SK, Luu VD, de Queiroz RA, Brems S, Clayton C. Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog. 2009;5(8):e1000565.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Subota I, Rotureau B, Blisnick T, Ngwabyt S, Durand-Dubief M, Engstler M, et al. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation. Mol Biol Cell. 2011;22(22):4205–19.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Dupe A, Dumas C, Papadopoulou B. An Alba-domain protein contributes to the stage-regulated stability of amastin transcripts in Leishmania. Mol Microbiol. 2014;91(3):548–61.CrossRefPubMedGoogle Scholar
  196. 196.
    Dupe A, Dumas C, Papadopoulou B. Differential subcellular localization of Leishmania Alba-Domain proteins throughout the parasite development. PLoS ONE. 2015;10(9):e0137243.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Friday AJ, Keiper BD. Positive mRNA translational control in germ cells by initiation factor selectivity. Biomed Res Int. 2015;2015:327963.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Osvaldo P. de Melo Neto
    • 1
    Email author
  • Christian R. S. Reis
    • 1
  • Danielle M. N. Moura
    • 1
  • Eden R. Freire
    • 1
  • Mark Carrington
    • 2
  1. 1.Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo CruzRecifeBrazil
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations