Skip to main content

Evolution of TOR and Translation Control

  • Chapter
  • First Online:

Abstract

The evolutionarily conserved serine/threonine protein kinase target of rapamycin (TOR) is a master controller of cell growth. TOR controls growth by promoting anabolic processes and inhibiting catabolic processes in response to nutrient availability, growth factors and cellular energy, which can be perturbed by environmental and cellular stresses. These upstream signals are integrated by TOR, which in turn modulates protein synthesis—an energetically demanding cellular process that requires tight regulation to minimize energy expenditure. The TOR pathway plays a central role in the control of protein synthesis through the phosphorylation of numerous substrates with well-characterized functions in ribosome biogenesis and the initiation and elongation steps of protein synthesis. The role of TOR in protein synthesis has been studied in extensive detail in several eukaryotic model systems, and consequently, a great deal is now known about how TOR controls protein synthesis in eukaryotes. In this book chapter, we provide an evolutionary perspective of the TOR pathway in the control of protein synthesis and ribosome biogenesis across eukaryotes (from unicellular to multicellular organisms).

The original version of the book was revised: A spelling error in the author’s name was corrected, a figure was placed correctly, and a typographical error was corrected. The erratum to this chapter is available at 10.1007/978-3-319-39468-8_23

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-39468-8_23

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Possibly reflecting the fact that the prevalent phospho-accepting amino acids in bacterial proteins are histidine and aspartate, and not serine, threonine or tyrosine (which are more frequently phosphorylated in eukaryotes) [23, 24].

  2. 2.

    A recent study shows that mTOR (specifically mTORC2) can also catalyze the phosphorylation of tyrosine residues [27, 28].

  3. 3.

    The structure of mTOR in complex with its binding proteins has now been defined at the atomic level by the following studies [30, 31].

  4. 4.

    mTOR gene has been reported to encode two isoforms resultant from an alternative splicing event. The long isoform (mTOR alpha) is 289 kDa and the short isoform (mTOR beta) is 80 kDa. Most published studies refer to the long (289 kDa) mTOR alpha isoform. Further details in Ref. [39].

  5. 5.

    One cannot rule out, however, functional adaptation of alternative signaling pathways in the control of cell growth. A shared cellular function does not necessitate a common signaling mechanism. Convergent evolution allows for different signaling mechanisms fulfilling a shared cellular role in distinct species.

  6. 6.

    Metazoans have evolved several cascades that control cellular and organismal growth. One major growth pathway is the insulin/mTORC1 signaling pathway, which in mammals follows the sequence: insulin, insulin receptor, PI3K, Akt, TSC1/TSC2/RHEB and mTORC1. In Drosophila melanogaster the signaling mode does not follow this linear sequence. In insects, dPI3 K and dTORC1 pathways do not crosstalk—instead, they appear to function in parallel to control cellular and organismal growth in response to environmental, endocrinological and nutritional inputs [181].

  7. 7.

    The fact that human LARP1 and insect dLARP share a common binding partner, PABP (poly-(A) binding protein), suggests that these proteins carry functional homology across eukaryotes [174, 199, 200].

  8. 8.

    It does not, however, affect fly viability.

  9. 9.

    In contrast to eIF4E, both eIF4G proteins are single-copy genes within the Drosophila genus (FlyBase.org; [201203]).

  10. 10.

    S6K2 was discovered almost a decade later by several groups [308311].

  11. 11.

    PDK1 can also phosphorylate Thr389 (Thr412 according to the p85 S6K1 isoform amino acid numbering) in vitro, albeit at rather low stoichiometry indicating that PDK1 is not the predominant Thr389-kinase in vivo [317].

  12. 12.

    S6K1 preferentially phosphorylates another S6K substrate: IRS-1 (insulin receptor substrate-1) [332].

  13. 13.

    Phosphorylation of RPS6 at Ser235 and Ser236 can also be catalyzed by another family of S6 kinases termed p90RSKs (short for ribosomal S6 kinases of 90 kDa). p90RSKs are not subject to regulation by the TOR pathway and are therefore not reviewed in this chapter. For additional information on p90RSKs please refer to this excellent review on the subject [333].

  14. 14.

    Thr37, Thr46, Thr41, Thr50, Ser65 and Thr70 (but not Ser83, Ser101 and Ser112) are conserved in between mammals and insects. This suggests that the N-terminal phosphorylation residues play a conserved regulatory role in evolution.

  15. 15.

    The following factors have been previously linked to regulation of TOP mRNA translation: ribosomal protein S6 (RPS6) and its kinases S6Ks, eukaryotic initiation factor 4E (eIF4E) and its binding partners 4E-BPs, lupus autoantigen (La) protein and the La-related protein 7, cellular nucleic acid-binding protein (CNBP) also known as zinc finger protein 9 (ZNF9), microRNAs miR-10a and miR-10b. While some of these do appear to contribute to TOP mRNA regulation on some level (e.g., TIA1/TIAR represses TOP mRNA translation in response to amino acid deprivation), definitive evidence for any these being the long-sought controller of TOP mRNA translation is lacking. Refer to the following review for an exhaustive analysis of these factors in the context of TOP mRNA regulation [386].

  16. 16.

    Roux and colleagues proposed a different model in which LARP1 functions as an activator (rather than an inhibitor) of TOP mRNA translation. See Ref. [373] for an alternative perspective on this subject.

  17. 17.

    The translation of cell-cycle-related genes has been argued to be less sensitive to acute mTOR inhibition than TOP mRNAs [295]. This subject is discussed further herein [99].

  18. 18.

    The importance of the hippocampus in consolidating new memories was described in a seminal case report by the neurosurgeon William Scoville and the psychologist Brenda Milner (a former graduate student of Donald Hebb) in 1957. A historical perspective of “Patient HM,” whose hippocampi had been almost completely surgically resected has been recently published and is a highly recommended read [419].

References

  1. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot. 1975;28(10):727–32.

    Article  CAS  PubMed  Google Scholar 

  2. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975;28(10):721–6.

    Article  CAS  PubMed  Google Scholar 

  3. Baker H, Sidorowicz A, Sehgal SN, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot. 1978;31(6):539–45.

    Article  CAS  PubMed  Google Scholar 

  4. Bierer BE, Mattila PS, Standaert RF, Herzenberg LA, Burakoff SJ, Crabtree G, et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci USA. 1990;87(23):9231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fischer PA, Sigal NH. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol. 1990;144(4):1418–24.

    CAS  PubMed  Google Scholar 

  6. Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol. 1990;144(1):251–8.

    CAS  PubMed  Google Scholar 

  7. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73(3):585–96.

    Article  CAS  PubMed  Google Scholar 

  9. Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  11. Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA. 1994;91(26):12574–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815–22.

    Article  CAS  PubMed  Google Scholar 

  13. Weisman R, Choder M. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem. 2001;276(10):7027–32.

    Article  CAS  PubMed  Google Scholar 

  14. Kawai M, Nakashima A, Ueno M, Ushimaru T, Aiba K, Doi H, et al. Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. Curr Genet. 2001;39(3):166–74.

    Google Scholar 

  15. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000;14:2689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14:2712–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol: CB. 2002;12(17):1448–61.

    Google Scholar 

  18. Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA. 2002;99(9):6422–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev. 2013;23(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  22. Serfontein J, Nisbet RE, Howe CJ, de Vries PJ. Evolution of the TSC1/TSC2-TOR signaling pathway. Sci Signaling. 2010;3(128):ra49.

    Google Scholar 

  23. West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci. 2001;26(6):369–76.

    Article  CAS  PubMed  Google Scholar 

  24. Klumpp S, Krieglstein J. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem/FEBS. 2002;269(4):1067–71.

    Article  CAS  Google Scholar 

  25. Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell. 1994;5(1):105–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lempiainen H, Halazonetis TD. Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J. 2009;28(20):3067–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Proud CG. mTORC2 is a tyrosine kinase. Cell Res. 2016;26(2):266.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, et al. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res. 2016;26(1):46–65.

    Article  CAS  PubMed  Google Scholar 

  29. Bosotti R, Isacchi A, Sonnhammer EL. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci. 2000;25(5):225–7.

    Article  CAS  PubMed  Google Scholar 

  30. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature. 2013;497(7448):217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, et al. Architecture of human mTOR complex 1. Science. 2016;351(6268):48–52.

    Article  CAS  PubMed  Google Scholar 

  32. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell. 1996;7(1):25–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 1995;82(1):121–30.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt A, Kunz J, Hall MN. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA. 1996;93(24):13780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Helliwell SB, Schmidt A, Ohya Y, Hall MN. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol: CB. 1998;8(22):1211–4.

    Article  CAS  PubMed  Google Scholar 

  36. Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics. 1998;148(1):99–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rispal D, Eltschinger S, Stahl M, Vaga S, Bodenmiller B, Abraham Y, et al. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J Biol Chem. 2015;290(24):14963–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shimada K, Filipuzzi I, Stahl M, Helliwell SB, Studer C, Hoepfner D, et al. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell. 2013;51(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  39. Panasyuk G, Nemazanyy I, Zhyvoloup A, Filonenko V, Davies D, Robson M, et al. mTORbeta splicing isoform promotes cell proliferation and tumorigenesis. J Biol Chem. 2009;284(45):30807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457–68.

    Article  CAS  PubMed  Google Scholar 

  41. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  42. Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  43. Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, et al. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem. 2004;279(15):14752–62.

    Article  CAS  PubMed  Google Scholar 

  44. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895–904.

    Article  CAS  PubMed  Google Scholar 

  45. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol: CB. 2004;14(14):1296–302.

    Article  CAS  PubMed  Google Scholar 

  46. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8.

    Article  CAS  PubMed  Google Scholar 

  47. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125–37.

    Article  CAS  PubMed  Google Scholar 

  48. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  49. Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011;189(4):1177–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Virgilio C, Loewith R. The TOR signalling network from yeast to man. Int J Biochem cell Biol. 2006;38(9):1476–81.

    Article  CAS  PubMed  Google Scholar 

  51. Soulard A, Cohen A, Hall MN. TOR signaling in invertebrates. Curr Opin Cell Biol. 2009;21(6):825–36.

    Article  CAS  PubMed  Google Scholar 

  52. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.

    Article  CAS  PubMed  Google Scholar 

  53. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell. 2007;26(5):663–74.

    Article  CAS  PubMed  Google Scholar 

  54. Di Como CJ, Arndt KT. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 1996;10(15):1904–16.

    Article  PubMed  Google Scholar 

  55. Cybulski N, Hall MN. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci. 2009;34(12):620–7.

    Article  CAS  PubMed  Google Scholar 

  56. Eltschinger S, Loewith R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol. 2016;26(2):148–59.

    Article  CAS  PubMed  Google Scholar 

  57. Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R, et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol. 2005;25(16):7239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2011;108(48):19222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci USA. 2012;109(5):1536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Azpiazu I, Saltiel AR, DePaoli-Roach AA, Lawrence JC. Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J Biol Chem. 1996;271(9):5033–9.

    Article  CAS  PubMed  Google Scholar 

  62. Redpath NT, Foulstone EJ, Proud CG. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 1996;15(9):2291–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA. 1994;91(10):4441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18.

    Article  CAS  PubMed  Google Scholar 

  66. Cosentino GP, Schmelzle T, Haghighat A, Helliwell SB, Hall MN, Sonenberg N. Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20(13):4604–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Altmann M, Schmitz N, Berset C, Trachsel H. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J. 1997;16(5):1114–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zanchin NI, McCarthy JE. Characterization of the in vivo phosphorylation sites of the mRNA.cap-binding complex proteins eukaryotic initiation factor-4E and p20 in Saccharomyces cerevisiae. J Biol Chem. 1995;270(44):26505–10.

    Article  CAS  PubMed  Google Scholar 

  69. Berset C, Trachsel H, Altmann M. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1998;95(8):4264–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009;23(16):1929–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Soulard A, Cremonesi A, Moes S, Schutz F, Jeno P, Hall MN. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell. 2010;21(19):3475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, Gradi A, et al. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 2000;19(3):434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol. 2005;59:407–50.

    Article  CAS  PubMed  Google Scholar 

  74. Kubota H, Obata T, Ota K, Sasaki T, Ito T. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem. 2003;278(23):20457–60.

    Article  CAS  PubMed  Google Scholar 

  75. Cherkasova VA, Hinnebusch AG. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 2003;17(7):859–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA. 2014;111(29):10586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Woolford JL Jr, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics. 2013;195(3):643–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 2004;18(20):2491–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Powers T, Walter P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell. 1999;10(4):987–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zaragoza D, Ghavidel A, Heitman J, Schultz MC. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol. 1998;18(8):4463–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA. 1999;96(26):14866–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shamji AF, Kuruvilla FG, Schreiber SL. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol: CB. 2000;10(24):1574–81.

    Article  CAS  PubMed  Google Scholar 

  83. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 1999;13(24):3271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Claypool JA, French SL, Johzuka K, Eliason K, Vu L, Dodd JA, et al. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol Biol Cell. 2004;15(2):946–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Philippi A, Steinbauer R, Reiter A, Fath S, Leger-Silvestre I, Milkereit P, et al. TOR-dependent reduction in the expression level of Rrn3p lowers the activity of the yeast RNA Pol I machinery, but does not account for the strong inhibition of rRNA production. Nucleic Acids Res. 2010;38(16):5315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Laferte A, Favry E, Sentenac A, Riva M, Carles C, Chedin S. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev. 2006;20(15):2030–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reiter A, Steinbauer R, Philippi A, Gerber J, Tschochner H, Milkereit P, et al. Reduction in ribosomal protein synthesis is sufficient to explain major effects on ribosome production after short-term TOR inactivation in Saccharomyces cerevisiae. Mol Cell Biol. 2011;31(4):803–17.

    Article  CAS  PubMed  Google Scholar 

  88. Chen H, Fan M, Pfeffer LM, Laribee RN. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 2012;40(14):6534–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li H, Tsang CK, Watkins M, Bertram PG, Zheng XF. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature. 2006;442(7106):1058–61.

    Article  CAS  PubMed  Google Scholar 

  90. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298(5594):799–804.

    Article  CAS  PubMed  Google Scholar 

  91. Hall DB, Wade JT, Struhl K. An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26(9):3672–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O. Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol. 2007;27(22):8015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin DE, Soulard A, Hall MN. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell. 2004;119(7):969–79.

    Article  CAS  PubMed  Google Scholar 

  94. Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature. 2004;432(7020):1058–61.

    Article  CAS  PubMed  Google Scholar 

  95. Wade JT, Hall DB, Struhl K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature. 2004;432(7020):1054–8.

    Article  CAS  PubMed  Google Scholar 

  96. Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA. 2004;101(40):14315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lempiainen H, Uotila A, Urban J, Dohnal I, Ammerer G, Loewith R, et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell. 2009;33(6):704–16.

    Article  CAS  PubMed  Google Scholar 

  98. Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014;33(4):474–83.

    Article  CAS  PubMed  Google Scholar 

  99. Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Seminars in cell & developmental biology. 2014.

    Google Scholar 

  100. Gonzalez A, Shimobayashi M, Eisenberg T, Merle DA, Pendl T, Hall MN, et al. TORC1 promotes phosphorylation of ribosomal protein S6 via the AGC kinase Ypk3 in Saccharomyces cerevisiae. PLoS ONE. 2015;10(3):e0120250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yerlikaya S, Meusburger M, Kumari R, Huber A, Anrather D, Costanzo M, et al. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell. 2016;27(2):397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Upadhya R, Lee J, Willis IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell. 2002;10(6):1489–94.

    Article  CAS  PubMed  Google Scholar 

  103. Lee J, Moir RD, Willis IM. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem. 2009;284(19):12604–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee J, Moir RD, Willis IM. Differential phosphorylation of RNA polymerase III and the initiation factor TFIIIB in Saccharomyces cerevisiae. PLoS ONE. 2015;10(5):e0127225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lee J, Moir RD, McIntosh KB, Willis IM. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol Cell. 2012;45(6):836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M, et al. Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science. 2003;302(5648):1208–12.

    Article  CAS  PubMed  Google Scholar 

  107. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 2012;46(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  108. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012;149(2):410–24.

    Article  CAS  PubMed  Google Scholar 

  109. Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O. A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet. 2014;10(1):e1004084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757–68.

    Article  CAS  PubMed  Google Scholar 

  111. Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA. 2013;110(31):12526–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J, et al. PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery. 2015;5(11):1194–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010;29(23):3939–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol Cell. 2015;58(6):977–88.

    Article  CAS  PubMed  Google Scholar 

  115. Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, et al. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells: Devoted Mol Cell Mech. 2007;12(12):1357–70.

    Article  CAS  Google Scholar 

  116. Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol. 2007;27(8):3154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Alvarez B, Moreno S. Fission yeast Tor2 promotes cell growth and represses cell differentiation. J Cell Sci. 2006;119(Pt 21):4475–85.

    Article  CAS  PubMed  Google Scholar 

  118. Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci USA. 2007;104(9):3514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M. Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics. 2007;175(3):1153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cohen A, Kupiec M, Weisman R. Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J Biol Chem. 2014;289(31):21727–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hatano T, Morigasaki S, Tatebe H, Ikeda K, Shiozaki K. Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose. Cell Cycle. 2015;14(6):848–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nakashima A, Otsubo Y, Yamashita A, Sato T, Yamamoto M, Tamanoi F. Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. J Cell Sci. 2012;125(Pt 23):5840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nakashima A, Sato T, Tamanoi F. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci. 2010;123(Pt 5):777–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Weisman R, Choder M, Koltin Y. Rapamycin specifically interferes with the developmental response of fission yeast to starvation. J Bacteriol. 1997;179(20):6325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takahara T, Maeda T. TORC1 of fission yeast is rapamycin-sensitive. Genes Cells: Devoted Mol Cell Mech. 2012;17(8):698–708.

    Article  CAS  Google Scholar 

  126. Lamichhane TN, Blewett NH, Crawford AK, Cherkasova VA, Iben JR, Begley TJ, et al. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol Cell Biol. 2013;33(15):2918–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rodland GE, Tvegard T, Boye E, Grallert B. Crosstalk between the Tor and Gcn2 pathways in response to different stresses. Cell Cycle. 2014;13(3):453–61.

    Article  CAS  PubMed  Google Scholar 

  128. Valbuena N, Rozalen AE, Moreno S. Fission yeast TORC1 prevents eIF2alpha phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. J Cell Sci. 2012;125(Pt 24):5955–9.

    Article  CAS  PubMed  Google Scholar 

  129. Petersen J, Nurse P. TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol. 2007;9(11):1263–72.

    Article  CAS  PubMed  Google Scholar 

  130. Rexin D, Meyer C, Robaglia C, Veit B. TOR signalling in plants. Biochem J. 2015;470(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  131. Xiong Y, Sheen J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 2014;164(2):499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 2007;8(9):864–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, et al. Mutations in the Arabidopsis homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell. 2012;24(2):463–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Crespo JL, Diaz-Troya S, Florencio FJ. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 2005;139(4):1736–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, et al. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biol. 2007;7:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, et al. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell. 2012;24(12):4850–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Leiber RM, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C. The TOR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell. 2010;22(6):1898–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xiong Y, Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem. 2012;287(4):2836–42.

    Article  CAS  PubMed  Google Scholar 

  139. Schepetilnikov M, Kobayashi K, Geldreich A, Caranta C, Robaglia C, Keller M, et al. Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J. 2011;30(7):1343–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Montane MH, Menand B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J Exp Bot. 2013;64(14):4361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li L, Song Y, Wang K, Dong P, Zhang X, Li F, et al. TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis. Front Plant Sci. 2015;6:861.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Shemi A, Ben-Dor S, Vardi A. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy. 2015;11(4):701–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Anderson GH, Veit B, Hanson MR. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol. 2005;3:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Deprost D, Truong HN, Robaglia C, Meyer C. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun. 2005;326(4):844–50.

    Article  CAS  PubMed  Google Scholar 

  145. Mahfouz MM, Kim S, Delauney AJ, Verma DP. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell. 2006;18(2):477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ahn CS, Han JA, Lee HS, Lee S, Pai HS. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell. 2011;23(1):185–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ahn CS, Ahn HK, Pai HS. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J Exp Bot. 2015;66(3):827–40.

    Article  CAS  PubMed  Google Scholar 

  148. Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature. 2013;496(7444):181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol. 2011;73:209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ren M, Qiu S, Venglat P, Xiang D, Feng L, Selvaraj G, et al. Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol. 2011;155(3):1367–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Schepetilnikov M, Dimitrova M, Mancera-Martinez E, Geldreich A, Keller M, Ryabova LA. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 2013;32(8):1087–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE. 2010;5(7):e11883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, et al. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J: Cell Mol Biol. 2013;73(6):897–909.

    Article  CAS  Google Scholar 

  154. Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, et al. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front Plant Sci. 2015;6:677.

    PubMed  PubMed Central  Google Scholar 

  155. Hu R, Zhu Y, Shen G, Zhang H. TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. Plant Physiol. 2014;164(2):721–34.

    Article  CAS  PubMed  Google Scholar 

  156. Kravchenko A, Citerne S, Jehanno I, Bersimbaev RI, Veit B, Meyer C, et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochem Biophys Res Commun. 2015;467(4):992–7.

    Article  CAS  PubMed  Google Scholar 

  157. Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F. Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol. 2004;134(4):1527–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, et al. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol. 2015;89(3):309–18.

    Article  CAS  PubMed  Google Scholar 

  159. Khandal D, Samol I, Buhr F, Pollmann S, Schmidt H, Clemens S, et al. Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley. Proc Natl Acad Sci USA. 2009;106(31):13112–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Williams AJ, Werner-Fraczek J, Chang IF, Bailey-Serres J. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol. 2003;132(4):2086–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Turkina MV. Klang Arstrand H, Vener AV. Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night. PLoS ONE. 2011;6(12):e29307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Boex-Fontvieille E, Daventure M, Jossier M, Zivy M, Hodges M, Tcherkez G. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS ONE. 2013;8(7):e70692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Perez-Perez ME, Florencio FJ, Crespo JL. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol. 2010;152(4):1874–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Diaz-Troya S, Perez-Perez ME, Perez-Martin M, Moes S, Jeno P, Florencio FJ, et al. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Plant Physiol. 2011;157(2):730–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Henriques R, Magyar Z, Monardes A, Khan S, Zalejski C, Orellana J, et al. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO J. 2010;29(17):2979–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Reitz MU, Gifford ML, Schafer P. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. J Exp Bot. 2015;66(8):2187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ouibrahim L, Rubio AG, Moretti A, Montane MH, Menand B, Meyer C, et al. Potyviruses differ in their requirement for TOR signalling. J Gen Virol. 2015;96(9):2898–903.

    Article  CAS  PubMed  Google Scholar 

  168. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000;14(21):2689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14(21):2712–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hafen E. Interplay between growth factor and nutrient signaling: lessons from Drosophila. In: Thomas G, Sabatini DM, Hall MN, editors. TOR Target of rapamycin. Berlin, Heidelberg, New York: Springer; 2004. p. 153–68.

    Google Scholar 

  171. Neufeld TP. Genetic analysis of TOR signaling in Drosophila. In: Thomas G, Sabatini DM, Hall MN, editors. TOR Target of rapamycin. Berlin, Heidelberg, New York: Springer; 2004. p. 139–52.

    Google Scholar 

  172. Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene. 2013;32:3923–32.

    Article  CAS  PubMed  Google Scholar 

  173. Takahara T, Maeda T. Evolutionarily conserved regulation of TOR signalling. J Biochem. 2013;154:1–10.

    Article  CAS  PubMed  Google Scholar 

  174. Blagden SP, Gatt MK, Archambault V, Lada K, Ichihara K, Lilley KS, et al. Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev Biol. 2009;334(1):186–97.

    Article  CAS  PubMed  Google Scholar 

  175. Pallares-Cartes C, Cakan-Akdogan G, Teleman AA. Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila. Dev Cell. 2012;22(1):172–82.

    Article  CAS  PubMed  Google Scholar 

  176. Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko P. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev. 2005;19:1840–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wessells R, Fitzgerald E, Piazza N, Ocorr K, Morley S, Davies C, et al. d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell. 2009;8(5):542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G. Drosophila S6 kinase: a regulator of cell size. Science. 1999;285(5436):2126–9.

    Article  CAS  PubMed  Google Scholar 

  179. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328(5982):1172–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Nobukini T, Thomas G. The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. Novartis Foundation symposium. 2004;262:148–54; discussion 54–9, 265–8.

    Google Scholar 

  181. Radimerski T, Montagne J, Rintelen F, Stocker H, van der Kaay J, Downes CP, et al. dS6 K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol. 2002;4(3):251–5.

    Article  CAS  PubMed  Google Scholar 

  182. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biol: CB. 2004;14(10):885–90.

    Article  CAS  PubMed Central  Google Scholar 

  183. Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266(5185):653–6.

    Article  CAS  PubMed  Google Scholar 

  184. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature. 1994;371(6500):762–7.

    Article  CAS  PubMed  Google Scholar 

  185. Hu C, Pang S, Kong X, Velleca M, Lawrence JC Jr. Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors. Proc Natl Acad Sci USA. 1994;91(9):3730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Diggle TA, Bloomberg GB, Denton RM. Further characterization of the acid-soluble phosphoprotein (SDS/PAGE apparent molecular mass of 22 kDa) in rat fat-cells by peptide sequencing and immuno-analysis: effects of insulin and isoprenaline. Biochem J. 1995;306(Pt 1):135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Miron M, Verdu J, Lachance PE, Birnbaum MJ, Lasko PF, Sonenberg N. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nat Cell Biol. 2001;3(6):596–601.

    Article  CAS  PubMed  Google Scholar 

  188. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Sun P, Quan Z, Zhang B, Wu T, Xi R. TSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation. Development. 2010;137(15):2461–9.

    Article  CAS  PubMed  Google Scholar 

  190. Gancz D, Gilboa L. Insulin and Target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila. Development. 2013;140(20):4145–54.

    Article  CAS  PubMed  Google Scholar 

  191. Zhang Y, Billington CJ Jr, Pan D, Neufeld TP. Drosophila target of rapamycin kinase functions as a multimer. Genetics. 2006;172(1):355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. LaFever L, Feoktistov A, Hsu HJ, Drummond-Barbosa D. Specific roles of Target of rapamycin in the control of stem cells and their progeny in the Drosophila ovary. Development. 2010;137(13):2117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23.

    Google Scholar 

  194. Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE. 2007;2(11):e1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem. 2007;282(34):24514–24.

    Article  CAS  PubMed  Google Scholar 

  196. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem. 2007;282(28):20329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036–44.

    Article  CAS  PubMed  Google Scholar 

  198. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15.

    Article  CAS  PubMed  Google Scholar 

  199. Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290(26):15996–6020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Burrows C, Abd Latip N, Lam SJ, Carpenter L, Sawicka K, Tzolovsky G, et al. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res. 2010;38(16):5542–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simão FA, Pozdnyakov IA, et al. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res. 2015;43:D250–6.

    Article  PubMed  Google Scholar 

  202. Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li J, Kriventseva EV. OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res. 2011;39:D283–8.

    Article  CAS  PubMed  Google Scholar 

  203. Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013;41:D358–65.

    Article  CAS  PubMed  Google Scholar 

  204. Hernández G, Altmann M, Sierra JM, Urlaub H, Corral RD, Schwartz P, et al. Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mech Dev. 2005;122:529–43.

    Article  CAS  PubMed  Google Scholar 

  205. Tettweiler G, Kowanda M, Lasko P, Sonenberg N, Hernández G. The distribution of eIF4E-family members across insecta. Comp Funct Genom. 2012;2012:960420.

    Article  CAS  Google Scholar 

  206. Bernal A, Kimbrell DA. Drosophila Thor participates in host immune defence and conects a translational regulator with innate immunity. Proc Natl Acad Sci U S A. 2000;97:6019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Hernández G, Gandin V, Han H, Ferreira T, Sonenberg N, Lasko P. Translational control by Drosophila eIF4E-3 is essential for cell differentiation during spermiogenesis. Development. 2012;139:3211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Hernández G, Castellano MM, Agudo M, Sierra JM. Isolation and characterization of the cDNA and the gene for eukaryotic translation initiation factor 4G from Drosophila melanogaster. Eur J Biochem. 1998;253:27–35.

    Article  PubMed  Google Scholar 

  209. Baker CC, Fuller MT. Translational control of meiotic cell cycle progression and spermatid differentiation in male germ cells by a novel eIF4G homolog. Development. 2007;134:2863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Franklin-Dumont M, Chatterjee C, Wasserman SA, DiNardo S. A novel eIF4G homolog, Off-schedule, couples translational control of meiosis and differentiation in Drosophila spermatocytes. Development. 2007;134(15):2851–61.

    Article  CAS  PubMed  Google Scholar 

  211. Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, et al. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell. 2005;16(7):3273–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Soukas AA, Carr CE, Ruvkun G. Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS Genet. 2013;9(10):e1003908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Delahaye JL, Foster OK, Vine A, Saxton DS, Curtin TP, Somhegyi H, et al. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell. 2014;25(7):1073–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131(16):3897–906.

    Article  CAS  PubMed  Google Scholar 

  216. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.

    Article  CAS  PubMed  Google Scholar 

  217. Schreiber MA, Pierce-Shimomura JT, Chan S, Parry D, McIntire SL. Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1. PLoS Genet. 2010;6(5):e1000972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Honjoh S, Yamamoto T, Uno M, Nishida E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature. 2009;457(7230):726–30.

    Article  CAS  PubMed  Google Scholar 

  219. Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24(7):400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Aspuria PJ, Sato T, Tamanoi F. The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: temperature sensitive and constitutive active mutants of TOR. Cell Cycle. 2007;6(14):1692–5.

    Article  CAS  PubMed  Google Scholar 

  222. Mansfeld J, Urban N, Priebe S, Groth M, Frahm C, Hartmann N, et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat Commun. 2015;6:10043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RAC. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4.

    Article  CAS  PubMed  Google Scholar 

  224. Dorman JB, Albinder B, Shroyer T, Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 1995;141(4):1399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382(6591):536–9.

    Article  CAS  PubMed  Google Scholar 

  226. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277(5328):942–6.

    Article  CAS  PubMed  Google Scholar 

  227. Dillin A, Crawford DK, Kenyon C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science. 2002;298(5594):830–4.

    Article  CAS  PubMed  Google Scholar 

  228. Murphy CT, Hu PJ. Insulin/insulin-like growth factor signaling in C. elegans. WormBook: the online review of C elegans. Biology. 2013:1–43.

    Google Scholar 

  229. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278(5341):1319–22.

    Article  CAS  PubMed  Google Scholar 

  230. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007;282(41):30107–19.

    Article  CAS  PubMed  Google Scholar 

  231. Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA. 2005;102(12):4494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006;125(5):987–1001.

    Article  CAS  PubMed  Google Scholar 

  233. Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004;18(24):3004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Soltys CL, Kovacic S, Dyck JR. Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity. Am J Physiol Heart Circ Physiol. 2006;290(6):H2472–9.

    Article  CAS  PubMed  Google Scholar 

  235. Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J. 2014;459(2):275–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, et al. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell. 2014;53(2):209–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell. 2007;6(1):95–110.

    Article  CAS  PubMed  Google Scholar 

  238. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6(1):111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wolff NC, Vega-Rubin-de-Celis S, Xie XJ, Castrillon DH, Kabbani W, Brugarolas J. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol. 2011;31(9):1870–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 2009;23(4):496–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Mizunuma M, Neumann-Haefelin E, Moroz N, Li Y, Blackwell TK. mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell. 2014;13(5):869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell. 2009;8(2):113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature. 2007;447(7144):550–5.

    Article  CAS  PubMed  Google Scholar 

  246. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, et al. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol. 2002;37(12):1359–69.

    Article  PubMed  Google Scholar 

  247. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol. 2003;38(9):947–54.

    Article  CAS  PubMed  Google Scholar 

  248. Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, et al. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol. 2002;37(12):1371–8.

    Article  PubMed  Google Scholar 

  249. Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature. 2007;447(7144):545–9.

    Article  CAS  PubMed  Google Scholar 

  250. Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, Jacobson LA, et al. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J Exp Biol. 2006;209(Pt 20):4129–39.

    Article  CAS  PubMed  Google Scholar 

  251. Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell. 2006;5(6):487–94.

    Article  CAS  PubMed  Google Scholar 

  252. Hosono R, Nishimoto S, Kuno S. Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp Gerontol. 1989;24(3):251–64.

    Article  CAS  PubMed  Google Scholar 

  253. Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA. 1998;95(22):13091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, et al. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell. 2006;5(6):515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sheaffer KL, Updike DL, Mango SE. The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol: CB. 2008;18(18):1355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Rousakis A, Vlassis A, Vlanti A, Patera S, Thireos G, Syntichaki P. The general control nonderepressible-2 kinase mediates stress response and longevity induced by target of rapamycin inactivation in Caenorhabditis elegans. Aging Cell. 2013;12(5):742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell. 2008;133(2):292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999;399(6734):362–6.

    Article  CAS  PubMed  Google Scholar 

  259. Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 2006;124(6):1209–23.

    Article  CAS  PubMed  Google Scholar 

  260. Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 2000;14(12):1512–27.

    Google Scholar 

  261. Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  262. Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124(5):1055–68.

    Article  CAS  PubMed  Google Scholar 

  263. Ghazi A, Henis-Korenblit S, Kenyon C. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. PLoS Genet. 2009;5(9):e1000639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. McCormick M, Chen K, Ramaswamy P, Kenyon C. New genes that extend Caenorhabditis elegans’ lifespan in response to reproductive signals. Aging Cell. 2012;11(2):192–202.

    Article  CAS  PubMed  Google Scholar 

  265. Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol: CB. 2011;21(18):1507–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H. Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol. 2011;9(3):e1000599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, et al. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife. 2015;4.

    Google Scholar 

  268. Shen Y, Wollam J, Magner D, Karalay O, Antebi A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science. 2012;338(6113):1472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol: CB. 2010;20(24):2159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012;15(4):439–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Depuydt G, Xie F, Petyuk VA, Shanmugam N, Smolders A, Dhondt I, et al. Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans. Mol Cell Proteomics: MCP. 2013;12(12):3624–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Shore DE, Ruvkun G. A cytoprotective perspective on longevity regulation. Trends Cell Biol. 2013;23(9):409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature. 1995;377(6548):441–6.

    Article  CAS  PubMed  Google Scholar 

  274. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997;277(5322):99–101.

    Article  CAS  PubMed  Google Scholar 

  275. Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem. 1995;270(31):18531–8.

    Article  CAS  PubMed  Google Scholar 

  276. Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, et al. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA. 1995;92(16):7222–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Fadden P, Haystead TA, Lawrence JC Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem. 1997;272(15):10240–7.

    Article  CAS  PubMed  Google Scholar 

  278. von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol. 1997;17(9):5426–36.

    Article  Google Scholar 

  279. Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science. 1992;257(5072):973–7.

    Article  CAS  PubMed  Google Scholar 

  280. Weng QP, Andrabi K, Kozlowski MT, Grove JR, Avruch J. Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol. 1995;15(5):2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272(42):26457–63.

    Article  CAS  PubMed  Google Scholar 

  282. Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem. 1998;273(26):16621–9.

    Article  CAS  PubMed  Google Scholar 

  283. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273(23):14484–94.

    Article  CAS  PubMed  Google Scholar 

  284. Thomas G. p70s6k/p85s6k: mechanism of activation, effects of rapamycin and role in mitogenesis. Biochem Soc Trans. 1993;21(4):901–4.

    Article  CAS  PubMed  Google Scholar 

  285. Ferrari S, Pearson RB, Siegmann M, Kozma SC, Thomas G. The immunosuppressant rapamycin induces inactivation of p70s6k through dephosphorylation of a novel set of sites. J Biol Chem. 1993;268(22):16091–4.

    CAS  PubMed  Google Scholar 

  286. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA. 1998;95(4):1432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Fonseca BD, Lee VH, Proud CG. The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem J. 2008;411(1):141–9.

    Article  CAS  PubMed  Google Scholar 

  288. Wang L, Harris TE, Lawrence JC Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem. 2008;283(23):15619–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol: CB. 2006;16(18):1865–70.

    Article  CAS  PubMed  Google Scholar 

  291. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem. 2007;282(35):25604–12.

    Article  CAS  PubMed  Google Scholar 

  293. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem. 2003;278(12):10189–94.

    Article  CAS  PubMed  Google Scholar 

  294. Harthill JE. Pozuelo Rubio M, Milne FC, MacKintosh C. Regulation of the 14-3-3-binding protein p39 by growth factors and nutrients in rat PC12 pheochromocytoma cells. Biochem J. 2002;368(Pt 2):565–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485(7396):109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 2011;25(11):1159–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Dai N, Christiansen J, Nielsen FC, Avruch J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 2013;27(3):301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Demirkan G, Yu K, Boylan JM, Salomon AR, Gruppuso PA. Phosphoproteomic profiling of in vivo signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1). PLoS ONE. 2011;6(6):e21729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Schultze FC, Petrova DT, Oellerich M, Armstrong VW, Asif AR. Differential proteome and phosphoproteome signatures in human T-lymphoblast cells induced by sirolimus. Cell Prolif. 2010;43(4):396–404.

    Article  CAS  PubMed  Google Scholar 

  302. Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999;274(48):34493–8.

    Article  CAS  PubMed  Google Scholar 

  303. Price DJ, Nemenoff RA, Avruch J. Purification of a hepatic S6 kinase from cycloheximide-treated Rats. J Biol Chem. 1989;264(23):13825–33.

    CAS  PubMed  Google Scholar 

  304. Price DJ, Gunsalus JR, Avruch J. Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide. Proc Natl Acad Sci USA. 1990;87(20):7944–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J. Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci USA. 1990;87(21):8550–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Kozma SC, Ferrari S, Bassand P, Siegmann M, Totty N, Thomas G. Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc Natl Acad Sci USA. 1990;87(19):7365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price DJ, Avruch J, et al. Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol. 1991;11(11):5541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC. Disruption of the p70(s6 k)/p85(s6 k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 1998;17(22):6649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Gout I, Minami T, Hara K, Tsujishita Y, Filonenko V, Waterfield MD, et al. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J Biol Chem. 1998;273(46):30061–4.

    Article  CAS  PubMed  Google Scholar 

  310. Koh H, Jee K, Lee B, Kim J, Kim D, Yun YH, et al. Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene. 1999;18(36):5115–9.

    Article  CAS  PubMed  Google Scholar 

  311. Lee-Fruman KK, Kuo CJ, Lippincott J, Terada N, Blenis J. Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene. 1999;18(36):5108–14.

    Article  CAS  PubMed  Google Scholar 

  312. Calvo V, Crews CM, Vik TA, Bierer BE. Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proc Natl Acad Sci USA. 1992;89(16):7571–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Terada N, Lucas JJ, Szepesi A, Franklin RA, Takase K, Gelfand EW. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun. 1992;186(3):1315–21.

    Article  CAS  PubMed  Google Scholar 

  314. Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358(6381):70–3.

    Article  CAS  PubMed  Google Scholar 

  315. Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69(7):1227–36.

    Article  CAS  PubMed  Google Scholar 

  316. Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Current Biol: CB. 1998;8(2):69–81.

    Article  CAS  Google Scholar 

  317. Balendran A, Currie R, Armstrong CG, Avruch J, Alessi DR. Evidence that 3-phosphoinositide-dependent protein kinase-1 mediates phosphorylation of p70 S6 kinase in vivo at Thr-412 as well as Thr-252. J Biol Chem. 1999;274(52):37400–6.

    Article  CAS  PubMed  Google Scholar 

  318. Moser BA, Dennis PB, Pullen N, Pearson RB, Williamson NA, Wettenhall RE, et al. Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol. 1997;17(9):5648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Mukhopadhyay NK, Price DJ, Kyriakis JM, Pelech S, Sanghera J, Avruch J. An array of insulin-activated, proline-directed serine/threonine protein kinases phosphorylate the p70 S6 kinase. J Biol Chem. 1992;267(5):3325–35.

    CAS  PubMed  Google Scholar 

  320. Weng QP, Andrabi K, Klippel A, Kozlowski MT, Williams LT, Avruch J. Phosphatidylinositol 3-kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci USA. 1995;92(12):5744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Balendran A, Biondi RM, Cheung PC, Casamayor A, Deak M, Alessi DR. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J Biol Chem. 2000;275(27):20806–13.

    Article  CAS  PubMed  Google Scholar 

  322. Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 2000;19(5):979–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 2001;20(16):4380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, et al. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 2002;21(16):4219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  326. Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science. 2011;331(6018):730–6.

    Article  CAS  PubMed  Google Scholar 

  327. Coffer PJ, Woodgett JR. Differential subcellular localisation of two isoforms of p70 S6 protein kinase. Biochem Biophys Res Commun. 1994;198(2):780–6.

    Article  CAS  PubMed  Google Scholar 

  328. Reinhard C, Fernandez A, Lamb NJ, Thomas G. Nuclear localization of p85s6 k: functional requirement for entry into S phase. EMBO J. 1994;13(7):1557–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Rosner M, Hengstschlager M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene. 2011;30(44):4509–22.

    Article  CAS  PubMed  Google Scholar 

  330. Rosner M, Schipany K, Hengstschlager M. p70 S6K1 nuclear localization depends on its mTOR-mediated phosphorylation at T389, but not on its kinase activity towards S6. Amino Acids. 2012;42(6):2251–6.

    Article  CAS  PubMed  Google Scholar 

  331. Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, et al. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5’-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 2004;24(8):3112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biology. 2004;166(2):213–23.

    Article  CAS  Google Scholar 

  333. Romeo Y, Zhang X, Roux PP. Regulation and function of the RSK family of protein kinases. Biochem J. 2012;441(2):553–69.

    Google Scholar 

  334. Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 2005;19(18):2199–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004;23(8):1761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Dennis MD, Jefferson LS, Kimball SR. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem. 2012;287(51):42890–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.

    Article  CAS  PubMed  Google Scholar 

  338. Martineau Y, Wang X, Alain T, Petroulakis E, Shahbazian D, Fabre B, et al. Control of Paip1-eukayrotic translation initiation factor 3 interaction by amino acids through S6 kinase. Mol Cell Biol. 2014;34(6):1046–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006;314(5798):467–71.

    Article  CAS  PubMed  Google Scholar 

  340. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20(16):4370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem. 1998;273(22):14002–7.

    Article  CAS  PubMed  Google Scholar 

  342. Diggle TA, Denton RM. Characterisation of a novel “22 kDa” phosphoprotein which may be important in insulin action. Biochem Soc Trans. 1995;23(2):209S.

    Article  CAS  PubMed  Google Scholar 

  343. Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 2002;22(6):1674–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Bidinosti M, Martineau Y, Frank F, Sonenberg N. Repair of isoaspartate formation modulates the interaction of deamidated 4E-BP2 with mTORC1 in brain. J Biol Chem. 2010;285(25):19402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Bidinosti M, Ran I, Sanchez-Carbente MR, Martineau Y, Gingras AC, Gkogkas C, et al. Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission. Mol Cell. 2010;37(6):797–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999;13(11):1422–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Mothe-Satney I, Brunn GJ, McMahon LP, Capaldo CT, Abraham RT, Lawrence JC Jr. Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem. 2000;275(43):33836–43.

    Article  CAS  PubMed  Google Scholar 

  348. Mothe-Satney I, Yang D, Fadden P, Haystead TA, Lawrence JC Jr. Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol. 2000;20(10):3558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Shin S, Wolgamott L, Roux PP, Yoon SO. Casein kinase 1epsilon promotes cell proliferation by regulating mRNA translation. Cancer Res. 2014;74(1):201–11.

    Article  CAS  PubMed  Google Scholar 

  350. Wang X, Li W, Parra JL, Beugnet A, Proud CG. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 2003;23(5):1546–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2(12):893–8.

    Article  CAS  PubMed  Google Scholar 

  352. Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15(21):2852–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  353. Herbert TP, Tee AR, Proud CG. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem. 2002;277(13):11591–6.

    Article  CAS  PubMed  Google Scholar 

  354. Livingstone M, Bidinosti M. Rapamycin-insensitive mTORC1 activity controls eIF4E:4E-BP1 binding. F1000Research. 2012;1:4.

    Google Scholar 

  355. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell. 1999;3(6):707–16.

    Article  CAS  PubMed  Google Scholar 

  356. Tait S, Dutta K, Cowburn D, Warwicker J, Doig AJ, McCarthy JE. Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proc Natl Acad Sci USA. 2010;107(41):17627–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Tomoo K, Abiko F, Miyagawa H, Kitamura K, Ishida T. Effect of N-terminal region of eIF4E and Ser65-phosphorylation of 4E-BP1 on interaction between eIF4E and 4E-BP1 fragment peptide. J Biochem. 2006;140(2):237–46.

    Article  CAS  PubMed  Google Scholar 

  358. Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature. 2015;519(7541):106–9.

    Article  CAS  PubMed  Google Scholar 

  359. Fletcher CM, Wagner G. The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci: Publ Protein Soc. 1998;7(7):1639–42.

    Article  CAS  Google Scholar 

  360. Fletcher CM, McGuire AM, Gingras AC, Li H, Matsuo H, Sonenberg N, et al. 4E binding proteins inhibit the translation factor eIF4E without folded structure. Biochemistry. 1998;37(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  361. Hershey PE, McWhirter SM, Gross JD, Wagner G, Alber T, Sachs AB. The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem. 1999;274(30):21297–304.

    Article  CAS  PubMed  Google Scholar 

  362. Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, et al. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell. 2003;115(6):739–50.

    Article  CAS  PubMed  Google Scholar 

  363. Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, et al. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta. 2005;1753(2):191–208.

    Article  CAS  PubMed  Google Scholar 

  364. Ptushkina M, von der Haar T, Karim MM, Hughes JM, McCarthy JE. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. The EMBO journal. 1999;18(14):4068–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Denton RM, Tavare JM, Borthwick A, Dickens M, Diggle TA, Edgell NJ, et al. Insulin-activated protein kinases in fat and other cells. Biochem Soc Trans. 1992;20(3):659–64.

    Article  CAS  PubMed  Google Scholar 

  366. Diggle TA, Denton RM. Comparison of the effects of insulin and adrenergic agonists on the phosphorylation of an acid-soluble 22 kDa protein in rat epididymal fat-pads and isolated fat-cells. Biochem J. 1992;282(Pt 3):729–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, et al. Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J. 1995;311(Pt 2):595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Investig. 2007;117(2):387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med. 2001;7(10):1128–32.

    Article  CAS  PubMed  Google Scholar 

  370. Yun YS, Kim KH, Tschida B, Sachs Z, Noble-Orcutt KE, Moriarity BS, et al. mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress. Mol Cell. 2016;61(4):625–39.

    Article  CAS  PubMed  Google Scholar 

  371. Rapley J, Oshiro N, Ortiz-Vega S, Avruch J. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. J Biol Chem. 2011;286(44):38043–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Kazi AA, Lang CH. PRAS40 regulates protein synthesis and cell cycle in C2C12 myoblasts. Mol Med. 2010;16(9–10):359–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  373. Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5’TOP mRNA translation. Genes Dev. 2014;28(4):357–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Aoki K, Adachi S, Homoto M, Kusano H, Koike K, Natsume T. LARP1 specifically recognizes the 3’ terminus of poly(A) mRNA. FEBS Lett. 2013;587(14):2173–8.

    Article  CAS  PubMed  Google Scholar 

  375. Deragon JM, Bousquet-Antonelli C. The role of LARP1 in translation and beyond. Wiley interdisciplinary reviews RNA. 2015.

    Google Scholar 

  376. Bousquet-Antonelli C, Deragon JM. A comprehensive analysis of the La-motif protein superfamily. RNA. 2009;15(5):750–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Sobel SG, Wolin SL. Two yeast La motif-containing proteins are RNA-binding proteins that associate with polyribosomes. Mol Biol Cell. 1999;10(11):3849–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Kershaw CJ, Costello JL, Castelli LM, Talavera D, Rowe W, Sims PF, et al. The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response. PLoS Genet. 2015;11(1):e1004903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Chauvet S, Maurel-Zaffran C, Miassod R, Jullien N, Pradel J, Aragnol D. dlarp, a new candidate Hox target in Drosophila whose orthologue in mouse is expressed at sites of epithelium/mesenchymal interactions. Dev Dyn: Official Publ Amer Assoc Anatomists. 2000;218(3):401–13.

    Article  CAS  Google Scholar 

  380. Nykamp K, Lee MH, Kimble JC. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA. 2008;14(7):1378–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Smith RW, Blee TK, Gray NK. Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem Soc Trans. 2014;42(4):1229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, et al. XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress. Cell Rep. 2013;5(5):1279–93.

    Article  CAS  PubMed  Google Scholar 

  383. Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. Biochem Biokhimiia. 2012;77(6):562–74.

    Article  CAS  Google Scholar 

  384. Li GW, Burkhardt D, Gross C, Weissman JS. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell. 2014;157(3):624–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  385. Iadevaia V, Caldarola S, Tino E, Amaldi F, Loreni F. All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5’-terminal oligopyrimidine (TOP) mRNAs. RNA. 2008;14(9):1730–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochimica et biophysica acta. 2014.

    Google Scholar 

  387. Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5’ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA. 1991;88(8):3319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Avni D, Shama S, Loreni F, Meyuhas O. Vertebrate mRNAs with a 5’-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol Cell Biol. 1994;14(6):3822–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Shama S, Meyuhas O. The translational cis-regulatory element of mammalian ribosomal protein mRNAs is recognized by the plant translational apparatus. Eur J Biochem/FEBS. 1996;236(2):383–8.

    Article  CAS  Google Scholar 

  390. Biberman Y, Meyuhas O. Substitution of just five nucleotides at and around the transcription start site of rat beta-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Lett. 1997;405(3):333–6.

    Article  CAS  PubMed  Google Scholar 

  391. Biberman Y, Meyuhas O. TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate. FEBS Lett. 1999;456(3):357–60.

    Article  CAS  PubMed  Google Scholar 

  392. Loreni F, Amaldi F. Translational control of terminal oligopyrimidine mRNAs requires a specific regulator. FEBS Lett. 1997;416(3):239–42.

    Article  CAS  PubMed  Google Scholar 

  393. Pellizzoni L, Cardinali B, Lin-Marq N, Mercanti D, Pierandrei-Amaldi P. A Xenopus laevis homologue of the La autoantigen binds the pyrimidine tract of the 5’ UTR of ribosomal protein mRNAs in vitro: implication of a protein factor in complex formation. J Mol Biol. 1996;259(5):904–15.

    Article  CAS  PubMed  Google Scholar 

  394. Pellizzoni L, Lotti F, Maras B, Pierandrei-Amaldi P. Cellular nucleic acid binding protein binds a conserved region of the 5’ UTR of Xenopus laevis ribosomal protein mRNAs. J Mol Biol. 1997;267(2):264–75.

    Article  CAS  PubMed  Google Scholar 

  395. Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16(12):3693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Crosio C, Boyl PP, Loreni F, Pierandrei-Amaldi P, Amaldi F. La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res. 2000;28(15):2927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Cardinali B, Carissimi C, Gravina P, Pierandrei-Amaldi P. La protein is associated with terminal oligopyrimidine mRNAs in actively translating polysomes. J Biol Chem. 2003;278(37):35145–51.

    Article  CAS  PubMed  Google Scholar 

  398. Damgaard CK, Lykke-Andersen J. Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR. Genes Dev. 2011;25(19):2057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485(7396):55–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Han K, Jaimovich A, Dey G, Ruggero D, Meyuhas O, Sonenberg N, et al. Parallel measurement of dynamic changes in translation rates in single cells. Nat Methods. 2014;11(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  401. Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA. 1994;91(24):11477–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  402. Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol. 2001;21(24):8671–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  403. Lahr RM, Mack SM, Heroux A, Blagden SP, Bousquet-Antonelli C, Deragon JM, et al. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5’TOP sequence. Nucleic Acids Res. 2015;43(16):8077–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene. 2015;34(39):5025–36.

    Article  CAS  PubMed  Google Scholar 

  405. Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci USA. 2012;109(23):8977–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698–711.

    Article  CAS  PubMed  Google Scholar 

  407. Lipton JO, Sahin M. The neurology of mTOR. Neuron. 2014;84(2):275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014;7:28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Hebb DO. The organization of behavior; a neuropsychological theory. New York,: Wiley; 1949. xix, 335 p.

    Google Scholar 

  410. Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711.

    Article  CAS  PubMed  Google Scholar 

  411. Emes RD, Grant SG. Evolution of synapse complexity and diversity. Annu Rev Neurosci. 2012;35:111–31.

    Article  CAS  PubMed  Google Scholar 

  412. Moroz LL, Kohn AB. Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci. 2016;371(1685):20150041.

    Article  PubMed  PubMed Central  Google Scholar 

  413. Sossin WS, Lacaille JC. Mechanisms of translational regulation in synaptic plasticity. Curr Opin Neurobiol. 2010;20(4):450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Sutton MA, Schuman EM. Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol. 2005;64(1):116–31.

    Article  CAS  PubMed  Google Scholar 

  415. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009;61(1):10–26.

    Article  CAS  PubMed  Google Scholar 

  416. Richter JD, Klann E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 2009;23(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  417. Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, et al. Local RNA translation at the synapse and in disease. J Neurosci: official J Soc Neurosci. 2011;31(45):16086–93.

    Article  CAS  Google Scholar 

  418. Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, et al. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci. 2013.

    Google Scholar 

  419. Dossani RH, Missios S, Nanda A. The Legacy of Henry Molaison (1926-2008) and the Impact of His Bilateral Mesial Temporal Lobe Surgery on the Study of Human Memory. World Neurosurg. 2015;84(4):1127–35.

    Article  PubMed  Google Scholar 

  420. Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science. 2009;324(5934):1536–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  421. Tatavarty V, Ifrim MF, Levin M, Korza G, Barbarese E, Yu J, et al. Single-molecule imaging of translational output from individual RNA granules in neurons. Mol Biol Cell. 2012;23(5):918–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Flexner JB, Flexner LB, Stellar E. Memory in mice as affected by intracerebral puromycin. Science. 1963;141(3575):57–9.

    Article  CAS  PubMed  Google Scholar 

  423. Debiec J, LeDoux JE, Nader K. Cellular and systems reconsolidation in the hippocampus. Neuron. 2002;36(3):527–38.

    Article  CAS  PubMed  Google Scholar 

  424. Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722–6.

    Article  CAS  PubMed  Google Scholar 

  425. Tischmeyer W, Schicknick H, Kraus M, Seidenbecher CI, Staak S, Scheich H, et al. Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. Eur J Neurosci. 2003;18(4):942–50.

    Article  PubMed  Google Scholar 

  426. Parsons RG, Gafford GM, Helmstetter FJ. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J Neurosci: Official J Soc Neurosci. 2006;26(50):12977–83.

    Article  CAS  Google Scholar 

  427. Bekinschtein P, Katche C, Slipczuk LN, Igaz LM, Cammarota M, Izquierdo I, et al. mTOR signaling in the hippocampus is necessary for memory formation. Neurobiol Learn Mem. 2007;87(2):303–7.

    Article  CAS  PubMed  Google Scholar 

  428. Blundell J, Kouser M, Powell CM. Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol Learn Mem. 2008;90(1):28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Belelovsky K, Kaphzan H, Elkobi A, Rosenblum K. Biphasic activation of the mTOR pathway in the gustatory cortex is correlated with and necessary for taste learning. J Neurosci: Official J Soc Neurosci. 2009;29(23):7424–31.

    Article  CAS  Google Scholar 

  430. Glover EM, Ressler KJ, Davis M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs. cued fear memories. Learn Mem. 2010;17(11):577–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Gafford GM, Parsons RG, Helmstetter FJ. Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus. Neuroscience. 2011;182:98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Deli A, Schipany K, Rosner M, Hoger H, Pollak A, Li L, et al. Blocking mTORC1 activity by rapamycin leads to impairment of spatial memory retrieval but not acquisition in C57BL/6J mice. Behav Brain Res. 2012;229(2):320–4.

    Article  CAS  PubMed  Google Scholar 

  433. Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience. 2012;223:102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Jobim PF, Pedroso TR, Christoff RR, Werenicz A, Maurmann N, Reolon GK, et al. Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory. Neurobiol Learn Mem. 2012;97(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  435. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Pinsker HM, Hening WA, Carew TJ, Kandel ER. Long-term sensitization of a defensive withdrawal reflex in Aplysia. Science. 1973;182(4116):1039–42.

    Article  CAS  PubMed  Google Scholar 

  437. Stanton PK, Sarvey JM. Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci: Official J Soc Neurosci. 1984;4(12):3080–8.

    CAS  Google Scholar 

  438. Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science. 1986;234(4781):1249–54.

    Article  CAS  PubMed  Google Scholar 

  439. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33(3):253–8.

    Article  CAS  PubMed  Google Scholar 

  440. Huber KM, Roder JC, Bear MF. Chemical induction of mGluR5- and protein synthesis–dependent long-term depression in hippocampal area CA1. J Neurophysiol. 2001;86(1):321–5.

    CAS  PubMed  Google Scholar 

  441. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A. 2002;99(1):467–72.

    Article  CAS  PubMed  Google Scholar 

  442. Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, et al. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J Biol Chem. 2009;284(46):31498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Panja D, Kenney JW, D’Andrea L, Zalfa F, Vedeler A, Wibrand K, et al. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep. 2014;9(4):1430–45.

    Article  CAS  PubMed  Google Scholar 

  444. Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y, Salas C. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull. 2002;57(3–4):499–503.

    Article  CAS  PubMed  Google Scholar 

  445. Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell. 1999;99(2):221–37.

    Article  CAS  PubMed  Google Scholar 

  446. Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 2002;36(1):121–37.

    Article  CAS  PubMed  Google Scholar 

  447. Kempermann G. New neurons for ‘survival of the fittest’. Nat Rev Neurosci. 2012;13(10):727–36.

    CAS  PubMed  Google Scholar 

  448. Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184–7.

    Article  CAS  PubMed  Google Scholar 

  449. Kassabov SR, Choi YB, Karl KA, Vishwasrao HD, Bailey CH, Kandel ER. A single Aplysia neurotrophin mediates synaptic facilitation via differentially processed isoforms. Cell Rep. 2013;3(4):1213–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, et al. Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem. 2008;15(1):29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  451. Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, et al. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J. 2010;431(2):245–55.

    Article  CAS  PubMed  Google Scholar 

  452. Huynh TN, Santini E, Klann E. Requirement of Mammalian target of rapamycin complex 1 downstream effectors in cued fear memory reconsolidation and its persistence. J Neurosci: Official J Soc Neurosci. 2014;34(27):9034–9.

    Article  CAS  Google Scholar 

  453. Mac Callum PE, Hebert M, Adamec RE, Blundell J. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory. Neurobiol Learn Mem. 2014;112:176–85.

    Google Scholar 

  454. Im HI, Nakajima A, Gong B, Xiong X, Mamiya T, Gershon ES, et al. Post-training dephosphorylation of eEF-2 promotes protein synthesis for memory consolidation. PLoS ONE. 2009;4(10):e7424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Gildish I, Manor D, David O, Sharma V, Williams D, Agarwala U, et al. Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learn Mem. 2012;19(3):116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  456. McCamphill PK, Farah CA, Anadolu MN, Hoque S, Sossin WS. Bidirectional regulation of eEF2 phosphorylation controls synaptic plasticity by decoding neuronal activity patterns. J Neurosci: Official J Soc Neurosci. 2015;35(10):4403–17.

    Article  CAS  Google Scholar 

  457. Graber TE, Hebert-Seropian S, Khoutorsky A, David A, Yewdell JW, Lacaille JC, et al. Reactivation of stalled polyribosomes in synaptic plasticity. Proc Natl Acad Sci U S A. 2013;110(40):16205–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  458. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci: Official J S Neurosci. 2010;30(2):694–702.

    Article  CAS  Google Scholar 

  459. Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci. 2013;16(11):1530–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Buxbaum AR, Wu B, Singer RH. Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science. 2014;343(6169):419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Ceman S, O’Donnell WT, Reed M, Patton S, Pohl J, Warren ST. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet. 2003;12(24):3295–305.

    Article  CAS  PubMed  Google Scholar 

  462. Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, et al. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell. 2011;42(5):673–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Narayanan U, Nalavadi V, Nakamoto M, Thomas G, Ceman S, Bassell GJ, et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J Biol Chem. 2008;283(27):18478–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  464. Niere F, Wilkerson JR, Huber KM. Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression. J Neurosci: Official J Soc Neurosci. 2012;32(17):5924–36.

    Article  CAS  Google Scholar 

  465. Till SM, Li HL, Miniaci MC, Kandel ER, Choi YB. A presynaptic role for FMRP during protein synthesis-dependent long-term plasticity in Aplysia. Learn Mem. 2011;18(1):39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J Neurosci: Official J Soc Neurosci. 2005;25(42):9581–90.

    Article  CAS  Google Scholar 

  467. Banko JL, Hou L, Poulin F, Sonenberg N, Klann E. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J Neurosci: Official J Soc Neurosci. 2006;26(8):2167–73.

    Article  CAS  Google Scholar 

  468. Weatherill DB, Dyer J, Sossin WS. Ribosomal protein S6 kinase is a critical downstream effector of the target of rapamycin complex 1 for long-term facilitation in Aplysia. J Biol Chem. 2010;285(16):12255–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol. 2009;29(3):640–9.

    Article  CAS  PubMed  Google Scholar 

  470. Moccia R, Chen D, Lyles V, Kapuya E, Kalachikov S, et al. An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci: Official J Soc Neurosci. 2003;23(28):9409–17.

    CAS  Google Scholar 

  471. Poon MM, Choi SH, Jamieson CA, Geschwind DH, Martin KC. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci: Official J Soc Neurosci. 2006;26(51):13390–9.

    Article  CAS  Google Scholar 

  472. Tsokas P, Grace EA, Chan P, Ma T, Sealfon SC, Iyengar R, et al. Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J Neurosci: Official J Soc Neurosci. 2005;25(24):5833–43.

    Article  CAS  Google Scholar 

  473. Gobert D, Topolnik L, Azzi M, Huang L, Badeaux F, Desgroseillers L, et al. Forskolin induction of late-LTP and up-regulation of 5’ TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells. J Neurochem. 2008;106(3):1160–74.

    Article  CAS  PubMed  Google Scholar 

  474. Slavov N, Semrau S, Airoldi E, Budnik B, van Oudenaarden A. Differential Stoichiometry among Core Ribosomal Proteins. Cell Rep. 2015;13(5):865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  475. Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol. 2016.

    Google Scholar 

  476. McClatchy DB, Fang G, Levey AI. Elongation factor 1A family regulates the recycling of the M4 muscarinic acetylcholine receptor. Neurochem Res. 2006;31(7):975–88.

    Article  CAS  PubMed  Google Scholar 

  477. Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol. 2010;8(6):e1000393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  478. Carson RP, Fu C, Winzenburger P, Ess KC. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum Mol Genet. 2013;22(1):140–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all of the scientists in the TOR field for their contributions to our present understanding of the TOR pathway. We apologize to the scientists whose work was not acknowledged or discussed in further detail, in particular those who have contributed to the elucidation of the signaling pathways up- and downstream of TOR that regulate cellular functions other than mRNA translation. The authors wish to thank the various funding agencies that have contributed to research in our laboratories over the many years of the study of TOR. The authors also wish to thank the following funding agencies that currently fund their research: A.G. and M.N.H. acknowledge support from the Louis Jeantet Foundation, the Swiss National Science Foundation and the Canton of Basel. B.D.F. and T.A. gratefully acknowledge financial support from Prostate Cancer Canada. The laboratories of C.M. and C.R. are supported by ANR grants TRANSLATOR and DECORATOR; CR is also supported by the A*MIDEX project (no. ANR-11-IDEX-0001-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno D. Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonseca, B.D. et al. (2016). Evolution of TOR and Translation Control. In: Hernández, G., Jagus, R. (eds) Evolution of the Protein Synthesis Machinery and Its Regulation. Springer, Cham. https://doi.org/10.1007/978-3-319-39468-8_15

Download citation

Publish with us

Policies and ethics