Evolution of TOR and Translation Control

  • Bruno D. FonsecaEmail author
  • Tyson E. Graber
  • Huy-Dung Hoang
  • Asier González
  • Alexander A. Soukas
  • Greco Hernández
  • Tommy Alain
  • Stephanie L. Swift
  • Ronit Weisman
  • Christian Meyer
  • Christophe Robaglia
  • Joseph Avruch
  • Michael N. Hall


The evolutionarily conserved serine/threonine protein kinase target of rapamycin (TOR) is a master controller of cell growth. TOR controls growth by promoting anabolic processes and inhibiting catabolic processes in response to nutrient availability, growth factors and cellular energy, which can be perturbed by environmental and cellular stresses. These upstream signals are integrated by TOR, which in turn modulates protein synthesis—an energetically demanding cellular process that requires tight regulation to minimize energy expenditure. The TOR pathway plays a central role in the control of protein synthesis through the phosphorylation of numerous substrates with well-characterized functions in ribosome biogenesis and the initiation and elongation steps of protein synthesis. The role of TOR in protein synthesis has been studied in extensive detail in several eukaryotic model systems, and consequently, a great deal is now known about how TOR controls protein synthesis in eukaryotes. In this book chapter, we provide an evolutionary perspective of the TOR pathway in the control of protein synthesis and ribosome biogenesis across eukaryotes (from unicellular to multicellular organisms).


Saccharomyces cerevisiae Schizosaccharomyces pombe Drosophila melanogaster Caenorhabditis elegans Arabidopsis thaliana Mammals TOR (Target of Rapamycin) Ribosome biogenesis mRNA translation Protein synthesis 



We wish to thank all of the scientists in the TOR field for their contributions to our present understanding of the TOR pathway. We apologize to the scientists whose work was not acknowledged or discussed in further detail, in particular those who have contributed to the elucidation of the signaling pathways up- and downstream of TOR that regulate cellular functions other than mRNA translation. The authors wish to thank the various funding agencies that have contributed to research in our laboratories over the many years of the study of TOR. The authors also wish to thank the following funding agencies that currently fund their research: A.G. and M.N.H. acknowledge support from the Louis Jeantet Foundation, the Swiss National Science Foundation and the Canton of Basel. B.D.F. and T.A. gratefully acknowledge financial support from Prostate Cancer Canada. The laboratories of C.M. and C.R. are supported by ANR grants TRANSLATOR and DECORATOR; CR is also supported by the A*MIDEX project (no. ANR-11-IDEX-0001-02).


  1. 1.
    Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot. 1975;28(10):727–32.CrossRefPubMedGoogle Scholar
  2. 2.
    Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975;28(10):721–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Baker H, Sidorowicz A, Sehgal SN, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. III. In vitro and in vivo evaluation. J Antibiot. 1978;31(6):539–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Bierer BE, Mattila PS, Standaert RF, Herzenberg LA, Burakoff SJ, Crabtree G, et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci USA. 1990;87(23):9231–5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fischer PA, Sigal NH. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol. 1990;144(4):1418–24.PubMedGoogle Scholar
  6. 6.
    Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol. 1990;144(1):251–8.PubMedGoogle Scholar
  7. 7.
    Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73(3):585–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994;369(6483):756–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994;78(1):35–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA. 1994;91(26):12574–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815–22.CrossRefPubMedGoogle Scholar
  13. 13.
    Weisman R, Choder M. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem. 2001;276(10):7027–32.CrossRefPubMedGoogle Scholar
  14. 14.
    Kawai M, Nakashima A, Ueno M, Ushimaru T, Aiba K, Doi H, et al. Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. Curr Genet. 2001;39(3):166–74.Google Scholar
  15. 15.
    Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000;14:2689–94.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14:2712–24.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol: CB. 2002;12(17):1448–61.Google Scholar
  18. 18.
    Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA. 2002;99(9):6422–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci. 2009;122(Pt 20):3589–94.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev. 2013;23(1):53–62.CrossRefPubMedGoogle Scholar
  22. 22.
    Serfontein J, Nisbet RE, Howe CJ, de Vries PJ. Evolution of the TSC1/TSC2-TOR signaling pathway. Sci Signaling. 2010;3(128):ra49.Google Scholar
  23. 23.
    West AH, Stock AM. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci. 2001;26(6):369–76.CrossRefPubMedGoogle Scholar
  24. 24.
    Klumpp S, Krieglstein J. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur J Biochem/FEBS. 2002;269(4):1067–71.CrossRefGoogle Scholar
  25. 25.
    Helliwell SB, Wagner P, Kunz J, Deuter-Reinhard M, Henriquez R, Hall MN. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell. 1994;5(1):105–18.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lempiainen H, Halazonetis TD. Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J. 2009;28(20):3067–73.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang X, Proud CG. mTORC2 is a tyrosine kinase. Cell Res. 2016;26(2):266.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, et al. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res. 2016;26(1):46–65.CrossRefPubMedGoogle Scholar
  29. 29.
    Bosotti R, Isacchi A, Sonnhammer EL. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci. 2000;25(5):225–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ, Pavletich NP. mTOR kinase structure, mechanism and regulation. Nature. 2013;497(7448):217–23.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Aylett CH, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, et al. Architecture of human mTOR complex 1. Science. 2016;351(6268):48–52.CrossRefPubMedGoogle Scholar
  32. 32.
    Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell. 1996;7(1):25–42.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 1995;82(1):121–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Schmidt A, Kunz J, Hall MN. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA. 1996;93(24):13780–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Helliwell SB, Schmidt A, Ohya Y, Hall MN. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol: CB. 1998;8(22):1211–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics. 1998;148(1):99–112.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rispal D, Eltschinger S, Stahl M, Vaga S, Bodenmiller B, Abraham Y, et al. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J Biol Chem. 2015;290(24):14963–78.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shimada K, Filipuzzi I, Stahl M, Helliwell SB, Studer C, Hoepfner D, et al. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell. 2013;51(6):829–39.CrossRefPubMedGoogle Scholar
  39. 39.
    Panasyuk G, Nemazanyy I, Zhyvoloup A, Filonenko V, Davies D, Robson M, et al. mTORbeta splicing isoform promotes cell proliferation and tumorigenesis. J Biol Chem. 2009;284(45):30807–14.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002;10(3):457–68.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002;110(2):163–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110(2):177–89.CrossRefPubMedGoogle Scholar
  43. 43.
    Reinke A, Anderson S, McCaffery JM, Yates J 3rd, Aronova S, Chu S, et al. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem. 2004;279(15):14752–62.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell. 2003;11(4):895–904.CrossRefPubMedGoogle Scholar
  45. 45.
    Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol: CB. 2004;14(14):1296–302.CrossRefPubMedGoogle Scholar
  46. 46.
    Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004;6(11):1122–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127(1):125–37.CrossRefPubMedGoogle Scholar
  48. 48.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006;22(2):159–68.CrossRefPubMedGoogle Scholar
  49. 49.
    Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011;189(4):1177–201.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Virgilio C, Loewith R. The TOR signalling network from yeast to man. Int J Biochem cell Biol. 2006;38(9):1476–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Soulard A, Cohen A, Hall MN. TOR signaling in invertebrates. Curr Opin Cell Biol. 2009;21(6):825–36.CrossRefPubMedGoogle Scholar
  52. 52.
    Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.CrossRefPubMedGoogle Scholar
  53. 53.
    Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, et al. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell. 2007;26(5):663–74.CrossRefPubMedGoogle Scholar
  54. 54.
    Di Como CJ, Arndt KT. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 1996;10(15):1904–16.CrossRefPubMedGoogle Scholar
  55. 55.
    Cybulski N, Hall MN. TOR complex 2: a signaling pathway of its own. Trends Biochem Sci. 2009;34(12):620–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Eltschinger S, Loewith R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol. 2016;26(2):148–59.CrossRefPubMedGoogle Scholar
  57. 57.
    Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R, et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol. 2005;25(16):7239–48.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2011;108(48):19222–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Niles BJ, Mogri H, Hill A, Vlahakis A, Powers T. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci USA. 2012;109(5):1536–41.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Azpiazu I, Saltiel AR, DePaoli-Roach AA, Lawrence JC. Regulation of both glycogen synthase and PHAS-I by insulin in rat skeletal muscle involves mitogen-activated protein kinase-independent and rapamycin-sensitive pathways. J Biol Chem. 1996;271(9):5033–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Redpath NT, Foulstone EJ, Proud CG. Regulation of translation elongation factor-2 by insulin via a rapamycin-sensitive signalling pathway. EMBO J. 1996;15(9):2291–7.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA. 1994;91(10):4441–5.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–27.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10(5):307–18.CrossRefPubMedGoogle Scholar
  66. 66.
    Cosentino GP, Schmelzle T, Haghighat A, Helliwell SB, Hall MN, Sonenberg N. Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol Cell Biol. 2000;20(13):4604–13.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Altmann M, Schmitz N, Berset C, Trachsel H. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J. 1997;16(5):1114–21.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zanchin NI, McCarthy JE. Characterization of the in vivo phosphorylation sites of the mRNA.cap-binding complex proteins eukaryotic initiation factor-4E and p20 in Saccharomyces cerevisiae. J Biol Chem. 1995;270(44):26505–10.CrossRefPubMedGoogle Scholar
  69. 69.
    Berset C, Trachsel H, Altmann M. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1998;95(8):4264–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009;23(16):1929–43.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Soulard A, Cremonesi A, Moes S, Schutz F, Jeno P, Hall MN. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol Biol Cell. 2010;21(19):3475–86.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Raught B, Gingras AC, Gygi SP, Imataka H, Morino S, Gradi A, et al. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J. 2000;19(3):434–44.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol. 2005;59:407–50.CrossRefPubMedGoogle Scholar
  74. 74.
    Kubota H, Obata T, Ota K, Sasaki T, Ito T. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem. 2003;278(23):20457–60.CrossRefPubMedGoogle Scholar
  75. 75.
    Cherkasova VA, Hinnebusch AG. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev. 2003;17(7):859–72.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA. 2014;111(29):10586–91.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Woolford JL Jr, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics. 2013;195(3):643–81.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 2004;18(20):2491–505.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Powers T, Walter P. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell. 1999;10(4):987–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Zaragoza D, Ghavidel A, Heitman J, Schultz MC. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol. 1998;18(8):4463–70.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA. 1999;96(26):14866–70.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shamji AF, Kuruvilla FG, Schreiber SL. Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol: CB. 2000;10(24):1574–81.CrossRefPubMedGoogle Scholar
  83. 83.
    Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev. 1999;13(24):3271–9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Claypool JA, French SL, Johzuka K, Eliason K, Vu L, Dodd JA, et al. Tor pathway regulates Rrn3p-dependent recruitment of yeast RNA polymerase I to the promoter but does not participate in alteration of the number of active genes. Mol Biol Cell. 2004;15(2):946–56.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Philippi A, Steinbauer R, Reiter A, Fath S, Leger-Silvestre I, Milkereit P, et al. TOR-dependent reduction in the expression level of Rrn3p lowers the activity of the yeast RNA Pol I machinery, but does not account for the strong inhibition of rRNA production. Nucleic Acids Res. 2010;38(16):5315–26.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Laferte A, Favry E, Sentenac A, Riva M, Carles C, Chedin S. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev. 2006;20(15):2030–40.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Reiter A, Steinbauer R, Philippi A, Gerber J, Tschochner H, Milkereit P, et al. Reduction in ribosomal protein synthesis is sufficient to explain major effects on ribosome production after short-term TOR inactivation in Saccharomyces cerevisiae. Mol Cell Biol. 2011;31(4):803–17.CrossRefPubMedGoogle Scholar
  88. 88.
    Chen H, Fan M, Pfeffer LM, Laribee RN. The histone H3 lysine 56 acetylation pathway is regulated by target of rapamycin (TOR) signaling and functions directly in ribosomal RNA biogenesis. Nucleic Acids Res. 2012;40(14):6534–46.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Li H, Tsang CK, Watkins M, Bertram PG, Zheng XF. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature. 2006;442(7106):1058–61.CrossRefPubMedGoogle Scholar
  90. 90.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298(5594):799–804.CrossRefPubMedGoogle Scholar
  91. 91.
    Hall DB, Wade JT, Struhl K. An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26(9):3672–9.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Berger AB, Decourty L, Badis G, Nehrbass U, Jacquier A, Gadal O. Hmo1 is required for TOR-dependent regulation of ribosomal protein gene transcription. Mol Cell Biol. 2007;27(22):8015–26.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Martin DE, Soulard A, Hall MN. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell. 2004;119(7):969–79.CrossRefPubMedGoogle Scholar
  94. 94.
    Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature. 2004;432(7020):1058–61.CrossRefPubMedGoogle Scholar
  95. 95.
    Wade JT, Hall DB, Struhl K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature. 2004;432(7020):1054–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA. 2004;101(40):14315–22.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Lempiainen H, Uotila A, Urban J, Dohnal I, Ammerer G, Loewith R, et al. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell. 2009;33(6):704–16.CrossRefPubMedGoogle Scholar
  98. 98.
    Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014;33(4):474–83.CrossRefPubMedGoogle Scholar
  99. 99.
    Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Seminars in cell & developmental biology. 2014.Google Scholar
  100. 100.
    Gonzalez A, Shimobayashi M, Eisenberg T, Merle DA, Pendl T, Hall MN, et al. TORC1 promotes phosphorylation of ribosomal protein S6 via the AGC kinase Ypk3 in Saccharomyces cerevisiae. PLoS ONE. 2015;10(3):e0120250.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Yerlikaya S, Meusburger M, Kumari R, Huber A, Anrather D, Costanzo M, et al. TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell. 2016;27(2):397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Upadhya R, Lee J, Willis IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol Cell. 2002;10(6):1489–94.CrossRefPubMedGoogle Scholar
  103. 103.
    Lee J, Moir RD, Willis IM. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem. 2009;284(19):12604–8.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Lee J, Moir RD, Willis IM. Differential phosphorylation of RNA polymerase III and the initiation factor TFIIIB in Saccharomyces cerevisiae. PLoS ONE. 2015;10(5):e0127225.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lee J, Moir RD, McIntosh KB, Willis IM. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol Cell. 2012;45(6):836–43.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M, et al. Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science. 2003;302(5648):1208–12.CrossRefPubMedGoogle Scholar
  107. 107.
    Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell. 2012;46(1):105–10.CrossRefPubMedGoogle Scholar
  108. 108.
    Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012;149(2):410–24.CrossRefPubMedGoogle Scholar
  109. 109.
    Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O. A comprehensive tRNA deletion library unravels the genetic architecture of the tRNA pool. PLoS Genet. 2014;10(1):e1004084.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell. 2011;144(5):757–68.CrossRefPubMedGoogle Scholar
  111. 111.
    Betz C, Stracka D, Prescianotto-Baschong C, Frieden M, Demaurex N, Hall MN. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc Natl Acad Sci USA. 2013;110(31):12526–34.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J, et al. PtdIns(3,4,5)P3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery. 2015;5(11):1194–209.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010;29(23):3939–51.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol Cell. 2015;58(6):977–88.CrossRefPubMedGoogle Scholar
  115. 115.
    Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, et al. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells: Devoted Mol Cell Mech. 2007;12(12):1357–70.CrossRefGoogle Scholar
  116. 116.
    Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol. 2007;27(8):3154–64.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Alvarez B, Moreno S. Fission yeast Tor2 promotes cell growth and represses cell differentiation. J Cell Sci. 2006;119(Pt 21):4475–85.CrossRefPubMedGoogle Scholar
  118. 118.
    Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci USA. 2007;104(9):3514–9.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M. Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics. 2007;175(3):1153–62.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Cohen A, Kupiec M, Weisman R. Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J Biol Chem. 2014;289(31):21727–37.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hatano T, Morigasaki S, Tatebe H, Ikeda K, Shiozaki K. Fission yeast Ryh1 GTPase activates TOR Complex 2 in response to glucose. Cell Cycle. 2015;14(6):848–56.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Nakashima A, Otsubo Y, Yamashita A, Sato T, Yamamoto M, Tamanoi F. Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. J Cell Sci. 2012;125(Pt 23):5840–9.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Nakashima A, Sato T, Tamanoi F. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci. 2010;123(Pt 5):777–86.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Weisman R, Choder M, Koltin Y. Rapamycin specifically interferes with the developmental response of fission yeast to starvation. J Bacteriol. 1997;179(20):6325–34.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Takahara T, Maeda T. TORC1 of fission yeast is rapamycin-sensitive. Genes Cells: Devoted Mol Cell Mech. 2012;17(8):698–708.CrossRefGoogle Scholar
  126. 126.
    Lamichhane TN, Blewett NH, Crawford AK, Cherkasova VA, Iben JR, Begley TJ, et al. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast. Mol Cell Biol. 2013;33(15):2918–29.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Rodland GE, Tvegard T, Boye E, Grallert B. Crosstalk between the Tor and Gcn2 pathways in response to different stresses. Cell Cycle. 2014;13(3):453–61.CrossRefPubMedGoogle Scholar
  128. 128.
    Valbuena N, Rozalen AE, Moreno S. Fission yeast TORC1 prevents eIF2alpha phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. J Cell Sci. 2012;125(Pt 24):5955–9.CrossRefPubMedGoogle Scholar
  129. 129.
    Petersen J, Nurse P. TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol. 2007;9(11):1263–72.CrossRefPubMedGoogle Scholar
  130. 130.
    Rexin D, Meyer C, Robaglia C, Veit B. TOR signalling in plants. Biochem J. 2015;470(1):1–14.CrossRefPubMedGoogle Scholar
  131. 131.
    Xiong Y, Sheen J. The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol. 2014;164(2):499–512.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolai M, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep. 2007;8(9):864–70.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Moreau M, Azzopardi M, Clement G, Dobrenel T, Marchive C, Renne C, et al. Mutations in the Arabidopsis homolog of LST8/GbetaL, a partner of the target of Rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell. 2012;24(2):463–81.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Crespo JL, Diaz-Troya S, Florencio FJ. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol. 2005;139(4):1736–49.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, et al. Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biol. 2007;7:26.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Ren M, Venglat P, Qiu S, Feng L, Cao Y, Wang E, et al. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell. 2012;24(12):4850–74.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Leiber RM, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C. The TOR pathway modulates the structure of cell walls in Arabidopsis. Plant Cell. 2010;22(6):1898–908.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Xiong Y, Sheen J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem. 2012;287(4):2836–42.CrossRefPubMedGoogle Scholar
  139. 139.
    Schepetilnikov M, Kobayashi K, Geldreich A, Caranta C, Robaglia C, Keller M, et al. Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation. EMBO J. 2011;30(7):1343–56.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Montane MH, Menand B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change. J Exp Bot. 2013;64(14):4361–74.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Li L, Song Y, Wang K, Dong P, Zhang X, Li F, et al. TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis. Front Plant Sci. 2015;6:861.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Shemi A, Ben-Dor S, Vardi A. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes. Autophagy. 2015;11(4):701–15.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Anderson GH, Veit B, Hanson MR. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol. 2005;3:12.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Deprost D, Truong HN, Robaglia C, Meyer C. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun. 2005;326(4):844–50.CrossRefPubMedGoogle Scholar
  145. 145.
    Mahfouz MM, Kim S, Delauney AJ, Verma DP. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell. 2006;18(2):477–90.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Ahn CS, Han JA, Lee HS, Lee S, Pai HS. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell. 2011;23(1):185–209.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Ahn CS, Ahn HK, Pai HS. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. J Exp Bot. 2015;66(3):827–40.CrossRefPubMedGoogle Scholar
  148. 148.
    Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature. 2013;496(7444):181–6.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol. 2011;73:209–20.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Ren M, Qiu S, Venglat P, Xiang D, Feng L, Selvaraj G, et al. Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol. 2011;155(3):1367–82.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Schepetilnikov M, Dimitrova M, Mancera-Martinez E, Geldreich A, Keller M, Ryabova LA. TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J. 2013;32(8):1087–102.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Liu Y, Bassham DC. TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS ONE. 2010;5(7):e11883.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Caldana C, Li Y, Leisse A, Zhang Y, Bartholomaeus L, Fernie AR, et al. Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J: Cell Mol Biol. 2013;73(6):897–909.CrossRefGoogle Scholar
  154. 154.
    Dong P, Xiong F, Que Y, Wang K, Yu L, Li Z, et al. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front Plant Sci. 2015;6:677.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Hu R, Zhu Y, Shen G, Zhang H. TAP46 plays a positive role in the ABSCISIC ACID INSENSITIVE5-regulated gene expression in Arabidopsis. Plant Physiol. 2014;164(2):721–34.CrossRefPubMedGoogle Scholar
  156. 156.
    Kravchenko A, Citerne S, Jehanno I, Bersimbaev RI, Veit B, Meyer C, et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis. Biochem Biophys Res Commun. 2015;467(4):992–7.CrossRefPubMedGoogle Scholar
  157. 157.
    Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F. Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol. 2004;134(4):1527–35.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Imamura S, Kawase Y, Kobayashi I, Sone T, Era A, Miyagishima SY, et al. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae. Plant Mol Biol. 2015;89(3):309–18.CrossRefPubMedGoogle Scholar
  159. 159.
    Khandal D, Samol I, Buhr F, Pollmann S, Schmidt H, Clemens S, et al. Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley. Proc Natl Acad Sci USA. 2009;106(31):13112–7.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Williams AJ, Werner-Fraczek J, Chang IF, Bailey-Serres J. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize. Plant Physiol. 2003;132(4):2086–97.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Turkina MV. Klang Arstrand H, Vener AV. Differential phosphorylation of ribosomal proteins in Arabidopsis thaliana plants during day and night. PLoS ONE. 2011;6(12):e29307.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Boex-Fontvieille E, Daventure M, Jossier M, Zivy M, Hodges M, Tcherkez G. Photosynthetic control of Arabidopsis leaf cytoplasmic translation initiation by protein phosphorylation. PLoS ONE. 2013;8(7):e70692.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Perez-Perez ME, Florencio FJ, Crespo JL. Inhibition of target of rapamycin signaling and stress activate autophagy in Chlamydomonas reinhardtii. Plant Physiol. 2010;152(4):1874–88.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Diaz-Troya S, Perez-Perez ME, Perez-Martin M, Moes S, Jeno P, Florencio FJ, et al. Inhibition of protein synthesis by TOR inactivation revealed a conserved regulatory mechanism of the BiP chaperone in Chlamydomonas. Plant Physiol. 2011;157(2):730–41.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Henriques R, Magyar Z, Monardes A, Khan S, Zalejski C, Orellana J, et al. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1-E2F pathway activity. EMBO J. 2010;29(17):2979–93.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Reitz MU, Gifford ML, Schafer P. Hormone activities and the cell cycle machinery in immunity-triggered growth inhibition. J Exp Bot. 2015;66(8):2187–97.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Ouibrahim L, Rubio AG, Moretti A, Montane MH, Menand B, Meyer C, et al. Potyviruses differ in their requirement for TOR signalling. J Gen Virol. 2015;96(9):2898–903.CrossRefPubMedGoogle Scholar
  168. 168.
    Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 2000;14(21):2689–94.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 2000;14(21):2712–24.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Hafen E. Interplay between growth factor and nutrient signaling: lessons from Drosophila. In: Thomas G, Sabatini DM, Hall MN, editors. TOR Target of rapamycin. Berlin, Heidelberg, New York: Springer; 2004. p. 153–68.Google Scholar
  171. 171.
    Neufeld TP. Genetic analysis of TOR signaling in Drosophila. In: Thomas G, Sabatini DM, Hall MN, editors. TOR Target of rapamycin. Berlin, Heidelberg, New York: Springer; 2004. p. 139–52.Google Scholar
  172. 172.
    Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene. 2013;32:3923–32.CrossRefPubMedGoogle Scholar
  173. 173.
    Takahara T, Maeda T. Evolutionarily conserved regulation of TOR signalling. J Biochem. 2013;154:1–10.CrossRefPubMedGoogle Scholar
  174. 174.
    Blagden SP, Gatt MK, Archambault V, Lada K, Ichihara K, Lilley KS, et al. Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev Biol. 2009;334(1):186–97.CrossRefPubMedGoogle Scholar
  175. 175.
    Pallares-Cartes C, Cakan-Akdogan G, Teleman AA. Tissue-specific coupling between insulin/IGF and TORC1 signaling via PRAS40 in Drosophila. Dev Cell. 2012;22(1):172–82.CrossRefPubMedGoogle Scholar
  176. 176.
    Tettweiler G, Miron M, Jenkins M, Sonenberg N, Lasko P. Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. Genes Dev. 2005;19:1840–3.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Wessells R, Fitzgerald E, Piazza N, Ocorr K, Morley S, Davies C, et al. d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell. 2009;8(5):542–52.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Montagne J, Stewart MJ, Stocker H, Hafen E, Kozma SC, Thomas G. Drosophila S6 kinase: a regulator of cell size. Science. 1999;285(5436):2126–9.CrossRefPubMedGoogle Scholar
  179. 179.
    Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E, et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science. 2010;328(5982):1172–6.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Nobukini T, Thomas G. The mTOR/S6K signalling pathway: the role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. Novartis Foundation symposium. 2004;262:148–54; discussion 54–9, 265–8.Google Scholar
  181. 181.
    Radimerski T, Montagne J, Rintelen F, Stocker H, van der Kaay J, Downes CP, et al. dS6 K-regulated cell growth is dPKB/dPI(3)K-independent, but requires dPDK1. Nat Cell Biol. 2002;4(3):251–5.CrossRefPubMedGoogle Scholar
  182. 182.
    Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Current Biol: CB. 2004;14(10):885–90.CrossRefPubMedCentralGoogle Scholar
  183. 183.
    Lin TA, Kong X, Haystead TA, Pause A, Belsham G, Sonenberg N, et al. PHAS-I as a link between mitogen-activated protein kinase and translation initiation. Science. 1994;266(5185):653–6.CrossRefPubMedGoogle Scholar
  184. 184.
    Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature. 1994;371(6500):762–7.CrossRefPubMedGoogle Scholar
  185. 185.
    Hu C, Pang S, Kong X, Velleca M, Lawrence JC Jr. Molecular cloning and tissue distribution of PHAS-I, an intracellular target for insulin and growth factors. Proc Natl Acad Sci USA. 1994;91(9):3730–4.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Diggle TA, Bloomberg GB, Denton RM. Further characterization of the acid-soluble phosphoprotein (SDS/PAGE apparent molecular mass of 22 kDa) in rat fat-cells by peptide sequencing and immuno-analysis: effects of insulin and isoprenaline. Biochem J. 1995;306(Pt 1):135–9.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Miron M, Verdu J, Lachance PE, Birnbaum MJ, Lasko PF, Sonenberg N. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nat Cell Biol. 2001;3(6):596–601.CrossRefPubMedGoogle Scholar
  188. 188.
    Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5.PubMedPubMedCentralGoogle Scholar
  189. 189.
    Sun P, Quan Z, Zhang B, Wu T, Xi R. TSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation. Development. 2010;137(15):2461–9.CrossRefPubMedGoogle Scholar
  190. 190.
    Gancz D, Gilboa L. Insulin and Target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila. Development. 2013;140(20):4145–54.CrossRefPubMedGoogle Scholar
  191. 191.
    Zhang Y, Billington CJ Jr, Pan D, Neufeld TP. Drosophila target of rapamycin kinase functions as a multimer. Genetics. 2006;172(1):355–62.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    LaFever L, Feoktistov A, Hsu HJ, Drummond-Barbosa D. Specific roles of Target of rapamycin in the control of stem cells and their progeny in the Drosophila ovary. Development. 2010;137(13):2117–26.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23.Google Scholar
  194. 194.
    Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jeno P, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE. 2007;2(11):e1217.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG. PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem. 2007;282(34):24514–24.CrossRefPubMedGoogle Scholar
  196. 196.
    Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem. 2007;282(28):20329–39.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem. 2007;282(27):20036–44.CrossRefPubMedGoogle Scholar
  198. 198.
    Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15.CrossRefPubMedGoogle Scholar
  199. 199.
    Fonseca BD, Zakaria C, Jia JJ, Graber TE, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290(26):15996–6020.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Burrows C, Abd Latip N, Lam SJ, Carpenter L, Sawicka K, Tzolovsky G, et al. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res. 2010;38(16):5542–53.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Kriventseva EV, Tegenfeldt F, Petty TJ, Waterhouse RM, Simão FA, Pozdnyakov IA, et al. OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res. 2015;43:D250–6.CrossRefPubMedGoogle Scholar
  202. 202.
    Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li J, Kriventseva EV. OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. Nucleic Acids Res. 2011;39:D283–8.CrossRefPubMedGoogle Scholar
  203. 203.
    Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013;41:D358–65.CrossRefPubMedGoogle Scholar
  204. 204.
    Hernández G, Altmann M, Sierra JM, Urlaub H, Corral RD, Schwartz P, et al. Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila. Mech Dev. 2005;122:529–43.CrossRefPubMedGoogle Scholar
  205. 205.
    Tettweiler G, Kowanda M, Lasko P, Sonenberg N, Hernández G. The distribution of eIF4E-family members across insecta. Comp Funct Genom. 2012;2012:960420.CrossRefGoogle Scholar
  206. 206.
    Bernal A, Kimbrell DA. Drosophila Thor participates in host immune defence and conects a translational regulator with innate immunity. Proc Natl Acad Sci U S A. 2000;97:6019–24.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Hernández G, Gandin V, Han H, Ferreira T, Sonenberg N, Lasko P. Translational control by Drosophila eIF4E-3 is essential for cell differentiation during spermiogenesis. Development. 2012;139:3211–20.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Hernández G, Castellano MM, Agudo M, Sierra JM. Isolation and characterization of the cDNA and the gene for eukaryotic translation initiation factor 4G from Drosophila melanogaster. Eur J Biochem. 1998;253:27–35.CrossRefPubMedGoogle Scholar
  209. 209.
    Baker CC, Fuller MT. Translational control of meiotic cell cycle progression and spermatid differentiation in male germ cells by a novel eIF4G homolog. Development. 2007;134:2863–9.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Franklin-Dumont M, Chatterjee C, Wasserman SA, DiNardo S. A novel eIF4G homolog, Off-schedule, couples translational control of meiosis and differentiation in Drosophila spermatocytes. Development. 2007;134(15):2851–61.CrossRefPubMedGoogle Scholar
  211. 211.
    Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, et al. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713–24.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, et al. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell. 2005;16(7):3273–88.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Soukas AA, Carr CE, Ruvkun G. Genetic regulation of Caenorhabditis elegans lysosome related organelle function. PLoS Genet. 2013;9(10):e1003908.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Delahaye JL, Foster OK, Vine A, Saxton DS, Curtin TP, Somhegyi H, et al. Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell. 2014;25(7):1073–96.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development. 2004;131(16):3897–906.CrossRefPubMedGoogle Scholar
  216. 216.
    Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.CrossRefPubMedGoogle Scholar
  217. 217.
    Schreiber MA, Pierce-Shimomura JT, Chan S, Parry D, McIntire SL. Manipulation of behavioral decline in Caenorhabditis elegans with the Rag GTPase raga-1. PLoS Genet. 2010;6(5):e1000972.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Honjoh S, Yamamoto T, Uno M, Nishida E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature. 2009;457(7230):726–30.CrossRefPubMedGoogle Scholar
  219. 219.
    Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014;24(7):400–6.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–90.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Aspuria PJ, Sato T, Tamanoi F. The TSC/Rheb/TOR signaling pathway in fission yeast and mammalian cells: temperature sensitive and constitutive active mutants of TOR. Cell Cycle. 2007;6(14):1692–5.CrossRefPubMedGoogle Scholar
  222. 222.
    Mansfeld J, Urban N, Priebe S, Groth M, Frahm C, Hartmann N, et al. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing. Nat Commun. 2015;6:10043.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang RAC. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461–4.CrossRefPubMedGoogle Scholar
  224. 224.
    Dorman JB, Albinder B, Shroyer T, Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics. 1995;141(4):1399–406.PubMedPubMedCentralGoogle Scholar
  225. 225.
    Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382(6591):536–9.CrossRefPubMedGoogle Scholar
  226. 226.
    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science. 1997;277(5328):942–6.CrossRefPubMedGoogle Scholar
  227. 227.
    Dillin A, Crawford DK, Kenyon C. Timing requirements for insulin/IGF-1 signaling in C. elegans. Science. 2002;298(5594):830–4.CrossRefPubMedGoogle Scholar
  228. 228.
    Murphy CT, Hu PJ. Insulin/insulin-like growth factor signaling in C. elegans. WormBook: the online review of C elegans. Biology. 2013:1–43.Google Scholar
  229. 229.
    Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278(5341):1319–22.CrossRefPubMedGoogle Scholar
  230. 230.
    Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP, et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem. 2007;282(41):30107–19.CrossRefPubMedGoogle Scholar
  231. 231.
    Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci USA. 2005;102(12):4494–9.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006;125(5):987–1001.CrossRefPubMedGoogle Scholar
  233. 233.
    Apfeld J, O’Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004;18(24):3004–9.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Soltys CL, Kovacic S, Dyck JR. Activation of cardiac AMP-activated protein kinase by LKB1 expression or chemical hypoxia is blunted by increased Akt activity. Am J Physiol Heart Circ Physiol. 2006;290(6):H2472–9.CrossRefPubMedGoogle Scholar
  235. 235.
    Hawley SA, Ross FA, Gowans GJ, Tibarewal P, Leslie NR, Hardie DG. Phosphorylation by Akt within the ST loop of AMPK-alpha1 down-regulates its activation in tumour cells. Biochem J. 2014;459(2):275–87.CrossRefPubMedPubMedCentralGoogle Scholar
  236. 236.
    Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner DJ, et al. Ral and Rheb GTPase activating proteins integrate mTOR and GTPase signaling in aging, autophagy, and tumor cell invasion. Mol Cell. 2014;53(2):209–20.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell. 2007;6(1):95–110.CrossRefPubMedGoogle Scholar
  238. 238.
    Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, et al. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell. 2007;6(1):111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Wolff NC, Vega-Rubin-de-Celis S, Xie XJ, Castrillon DH, Kabbani W, Brugarolas J. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Mol Cell Biol. 2011;31(9):1870–84.CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–38.CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Soukas AA, Kane EA, Carr CE, Melo JA, Ruvkun G. Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes Dev. 2009;23(4):496–511.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Mizunuma M, Neumann-Haefelin E, Moroz N, Li Y, Blackwell TK. mTORC2-SGK-1 acts in two environmentally responsive pathways with opposing effects on longevity. Aging Cell. 2014;13(5):869–78.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Greer EL, Brunet A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell. 2009;8(2):113–27.CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature. 2007;447(7144):550–5.CrossRefPubMedGoogle Scholar
  246. 246.
    Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, et al. No reduction of metabolic rate in food restricted Caenorhabditis elegans. Exp Gerontol. 2002;37(12):1359–69.CrossRefPubMedGoogle Scholar
  247. 247.
    Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol. 2003;38(9):947–54.CrossRefPubMedGoogle Scholar
  248. 248.
    Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, et al. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol. 2002;37(12):1371–8.CrossRefPubMedGoogle Scholar
  249. 249.
    Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature. 2007;447(7144):545–9.CrossRefPubMedGoogle Scholar
  250. 250.
    Szewczyk NJ, Udranszky IA, Kozak E, Sunga J, Kim SK, Jacobson LA, et al. Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. J Exp Biol. 2006;209(Pt 20):4129–39.CrossRefPubMedGoogle Scholar
  251. 251.
    Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell. 2006;5(6):487–94.CrossRefPubMedGoogle Scholar
  252. 252.
    Hosono R, Nishimoto S, Kuno S. Alterations of life span in the nematode Caenorhabditis elegans under monoxenic culture conditions. Exp Gerontol. 1989;24(3):251–64.CrossRefPubMedGoogle Scholar
  253. 253.
    Lakowski B, Hekimi S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA. 1998;95(22):13091–6.CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, et al. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell. 2006;5(6):515–24.CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Sheaffer KL, Updike DL, Mango SE. The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Curr Biol: CB. 2008;18(18):1355–64.CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Rousakis A, Vlassis A, Vlanti A, Patera S, Thireos G, Syntichaki P. The general control nonderepressible-2 kinase mediates stress response and longevity induced by target of rapamycin inactivation in Caenorhabditis elegans. Aging Cell. 2013;12(5):742–51.CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, et al. Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell. 2008;133(2):292–302.CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999;399(6734):362–6.CrossRefPubMedGoogle Scholar
  259. 259.
    Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 2006;124(6):1209–23.CrossRefPubMedGoogle Scholar
  260. 260.
    Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 2000;14(12):1512–27.Google Scholar
  261. 261.
    Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139–45.CrossRefPubMedGoogle Scholar
  262. 262.
    Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124(5):1055–68.CrossRefPubMedGoogle Scholar
  263. 263.
    Ghazi A, Henis-Korenblit S, Kenyon C. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. PLoS Genet. 2009;5(9):e1000639.CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    McCormick M, Chen K, Ramaswamy P, Kenyon C. New genes that extend Caenorhabditis elegans’ lifespan in response to reproductive signals. Aging Cell. 2012;11(2):192–202.CrossRefPubMedGoogle Scholar
  265. 265.
    Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol: CB. 2011;21(18):1507–14.CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H. Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol. 2011;9(3):e1000599.CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, et al. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife. 2015;4.Google Scholar
  268. 268.
    Shen Y, Wollam J, Magner D, Karalay O, Antebi A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science. 2012;338(6113):1472–6.CrossRefPubMedPubMedCentralGoogle Scholar
  269. 269.
    de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol: CB. 2010;20(24):2159–68.CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012;15(4):439–50.CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Depuydt G, Xie F, Petyuk VA, Shanmugam N, Smolders A, Dhondt I, et al. Reduced insulin/insulin-like growth factor-1 signaling and dietary restriction inhibit translation but preserve muscle mass in Caenorhabditis elegans. Mol Cell Proteomics: MCP. 2013;12(12):3624–39.CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Shore DE, Ruvkun G. A cytoprotective perspective on longevity regulation. Trends Cell Biol. 2013;23(9):409–20.CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Brown EJ, Beal PA, Keith CT, Chen J, Shin TB, Schreiber SL. Control of p70 s6 kinase by kinase activity of FRAP in vivo. Nature. 1995;377(6548):441–6.CrossRefPubMedGoogle Scholar
  274. 274.
    Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science. 1997;277(5322):99–101.CrossRefPubMedGoogle Scholar
  275. 275.
    Lin TA, Kong X, Saltiel AR, Blackshear PJ, Lawrence JC Jr. Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J Biol Chem. 1995;270(31):18531–8.CrossRefPubMedGoogle Scholar
  276. 276.
    Graves LM, Bornfeldt KE, Argast GM, Krebs EG, Kong X, Lin TA, et al. cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc Natl Acad Sci USA. 1995;92(16):7222–6.CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Fadden P, Haystead TA, Lawrence JC Jr. Identification of phosphorylation sites in the translational regulator, PHAS-I, that are controlled by insulin and rapamycin in rat adipocytes. J Biol Chem. 1997;272(15):10240–7.CrossRefPubMedGoogle Scholar
  278. 278.
    von Manteuffel SR, Dennis PB, Pullen N, Gingras AC, Sonenberg N, Thomas G. The insulin-induced signalling pathway leading to S6 and initiation factor 4E binding protein 1 phosphorylation bifurcates at a rapamycin-sensitive point immediately upstream of p70s6k. Mol Cell Biol. 1997;17(9):5426–36.CrossRefGoogle Scholar
  279. 279.
    Price DJ, Grove JR, Calvo V, Avruch J, Bierer BE. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science. 1992;257(5072):973–7.CrossRefPubMedGoogle Scholar
  280. 280.
    Weng QP, Andrabi K, Kozlowski MT, Grove JR, Avruch J. Multiple independent inputs are required for activation of the p70 S6 kinase. Mol Cell Biol. 1995;15(5):2333–40.CrossRefPubMedPubMedCentralGoogle Scholar
  281. 281.
    Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J Biol Chem. 1997;272(42):26457–63.CrossRefPubMedGoogle Scholar
  282. 282.
    Weng QP, Kozlowski M, Belham C, Zhang A, Comb MJ, Avruch J. Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem. 1998;273(26):16621–9.CrossRefPubMedGoogle Scholar
  283. 283.
    Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273(23):14484–94.CrossRefPubMedGoogle Scholar
  284. 284.
    Thomas G. p70s6k/p85s6k: mechanism of activation, effects of rapamycin and role in mitogenesis. Biochem Soc Trans. 1993;21(4):901–4.CrossRefPubMedGoogle Scholar
  285. 285.
    Ferrari S, Pearson RB, Siegmann M, Kozma SC, Thomas G. The immunosuppressant rapamycin induces inactivation of p70s6k through dephosphorylation of a novel set of sites. J Biol Chem. 1993;268(22):16091–4.PubMedGoogle Scholar
  286. 286.
    Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA. 1998;95(4):1432–7.CrossRefPubMedPubMedCentralGoogle Scholar
  287. 287.
    Fonseca BD, Lee VH, Proud CG. The binding of PRAS40 to 14-3-3 proteins is not required for activation of mTORC1 signalling by phorbol esters/ERK. Biochem J. 2008;411(1):141–9.CrossRefPubMedGoogle Scholar
  288. 288.
    Wang L, Harris TE, Lawrence JC Jr. Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem. 2008;283(23):15619–27.CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell. 2009;137(5):873–86.CrossRefPubMedPubMedCentralGoogle Scholar
  290. 290.
    Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol: CB. 2006;16(18):1865–70.CrossRefPubMedGoogle Scholar
  291. 291.
    Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak M, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–22.CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Woo SY, Kim DH, Jun CB, Kim YM, Haar EV, Lee SI, et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem. 2007;282(35):25604–12.CrossRefPubMedGoogle Scholar
  293. 293.
    Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ, et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem. 2003;278(12):10189–94.CrossRefPubMedGoogle Scholar
  294. 294.
    Harthill JE. Pozuelo Rubio M, Milne FC, MacKintosh C. Regulation of the 14-3-3-binding protein p39 by growth factors and nutrients in rat PC12 pheochromocytoma cells. Biochem J. 2002;368(Pt 2):565–72.CrossRefPubMedPubMedCentralGoogle Scholar
  295. 295.
    Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012;485(7396):109–13.CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Dai N, Rapley J, Angel M, Yanik MF, Blower MD, Avruch J. mTOR phosphorylates IMP2 to promote IGF2 mRNA translation by internal ribosomal entry. Genes Dev. 2011;25(11):1159–72.CrossRefPubMedPubMedCentralGoogle Scholar
  297. 297.
    Dai N, Christiansen J, Nielsen FC, Avruch J. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts. Genes Dev. 2013;27(3):301–12.CrossRefPubMedPubMedCentralGoogle Scholar
  298. 298.
    Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317–22.CrossRefPubMedPubMedCentralGoogle Scholar
  299. 299.
    Demirkan G, Yu K, Boylan JM, Salomon AR, Gruppuso PA. Phosphoproteomic profiling of in vivo signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1). PLoS ONE. 2011;6(6):e21729.CrossRefPubMedPubMedCentralGoogle Scholar
  300. 300.
    Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villen J, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–6.CrossRefPubMedPubMedCentralGoogle Scholar
  301. 301.
    Schultze FC, Petrova DT, Oellerich M, Armstrong VW, Asif AR. Differential proteome and phosphoproteome signatures in human T-lymphoblast cells induced by sirolimus. Cell Prolif. 2010;43(4):396–404.CrossRefPubMedGoogle Scholar
  302. 302.
    Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999;274(48):34493–8.CrossRefPubMedGoogle Scholar
  303. 303.
    Price DJ, Nemenoff RA, Avruch J. Purification of a hepatic S6 kinase from cycloheximide-treated Rats. J Biol Chem. 1989;264(23):13825–33.PubMedGoogle Scholar
  304. 304.
    Price DJ, Gunsalus JR, Avruch J. Insulin activates a 70-kDa S6 kinase through serine/threonine-specific phosphorylation of the enzyme polypeptide. Proc Natl Acad Sci USA. 1990;87(20):7944–8.CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Banerjee P, Ahmad MF, Grove JR, Kozlosky C, Price DJ, Avruch J. Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc Natl Acad Sci USA. 1990;87(21):8550–4.CrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Kozma SC, Ferrari S, Bassand P, Siegmann M, Totty N, Thomas G. Cloning of the mitogen-activated S6 kinase from rat liver reveals an enzyme of the second messenger subfamily. Proc Natl Acad Sci USA. 1990;87(19):7365–9.CrossRefPubMedPubMedCentralGoogle Scholar
  307. 307.
    Grove JR, Banerjee P, Balasubramanyam A, Coffer PJ, Price DJ, Avruch J, et al. Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini. Mol Cell Biol. 1991;11(11):5541–50.CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Shima H, Pende M, Chen Y, Fumagalli S, Thomas G, Kozma SC. Disruption of the p70(s6 k)/p85(s6 k) gene reveals a small mouse phenotype and a new functional S6 kinase. EMBO J. 1998;17(22):6649–59.CrossRefPubMedPubMedCentralGoogle Scholar
  309. 309.
    Gout I, Minami T, Hara K, Tsujishita Y, Filonenko V, Waterfield MD, et al. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region. J Biol Chem. 1998;273(46):30061–4.CrossRefPubMedGoogle Scholar
  310. 310.
    Koh H, Jee K, Lee B, Kim J, Kim D, Yun YH, et al. Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt. Oncogene. 1999;18(36):5115–9.CrossRefPubMedGoogle Scholar
  311. 311.
    Lee-Fruman KK, Kuo CJ, Lippincott J, Terada N, Blenis J. Characterization of S6K2, a novel kinase homologous to S6K1. Oncogene. 1999;18(36):5108–14.CrossRefPubMedGoogle Scholar
  312. 312.
    Calvo V, Crews CM, Vik TA, Bierer BE. Interleukin 2 stimulation of p70 S6 kinase activity is inhibited by the immunosuppressant rapamycin. Proc Natl Acad Sci USA. 1992;89(16):7571–5.CrossRefPubMedPubMedCentralGoogle Scholar
  313. 313.
    Terada N, Lucas JJ, Szepesi A, Franklin RA, Takase K, Gelfand EW. Rapamycin inhibits the phosphorylation of p70 S6 kinase in IL-2 and mitogen-activated human T cells. Biochem Biophys Res Commun. 1992;186(3):1315–21.CrossRefPubMedGoogle Scholar
  314. 314.
    Kuo CJ, Chung J, Fiorentino DF, Flanagan WM, Blenis J, Crabtree GR. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature. 1992;358(6381):70–3.CrossRefPubMedGoogle Scholar
  315. 315.
    Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69(7):1227–36.CrossRefPubMedGoogle Scholar
  316. 316.
    Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Current Biol: CB. 1998;8(2):69–81.CrossRefGoogle Scholar
  317. 317.
    Balendran A, Currie R, Armstrong CG, Avruch J, Alessi DR. Evidence that 3-phosphoinositide-dependent protein kinase-1 mediates phosphorylation of p70 S6 kinase in vivo at Thr-412 as well as Thr-252. J Biol Chem. 1999;274(52):37400–6.CrossRefPubMedGoogle Scholar
  318. 318.
    Moser BA, Dennis PB, Pullen N, Pearson RB, Williamson NA, Wettenhall RE, et al. Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol. 1997;17(9):5648–55.CrossRefPubMedPubMedCentralGoogle Scholar
  319. 319.
    Mukhopadhyay NK, Price DJ, Kyriakis JM, Pelech S, Sanghera J, Avruch J. An array of insulin-activated, proline-directed serine/threonine protein kinases phosphorylate the p70 S6 kinase. J Biol Chem. 1992;267(5):3325–35.PubMedGoogle Scholar
  320. 320.
    Weng QP, Andrabi K, Klippel A, Kozlowski MT, Williams LT, Avruch J. Phosphatidylinositol 3-kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc Natl Acad Sci USA. 1995;92(12):5744–8.CrossRefPubMedPubMedCentralGoogle Scholar
  321. 321.
    Balendran A, Biondi RM, Cheung PC, Casamayor A, Deak M, Alessi DR. A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta) and PKC-related kinase 2 by PDK1. J Biol Chem. 2000;275(27):20806–13.CrossRefPubMedGoogle Scholar
  322. 322.
    Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 2000;19(5):979–88.CrossRefPubMedPubMedCentralGoogle Scholar
  323. 323.
    Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 2001;20(16):4380–90.CrossRefPubMedPubMedCentralGoogle Scholar
  324. 324.
    Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, et al. High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J. 2002;21(16):4219–28.CrossRefPubMedPubMedCentralGoogle Scholar
  325. 325.
    Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9–22.CrossRefPubMedGoogle Scholar
  326. 326.
    Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science. 2011;331(6018):730–6.CrossRefPubMedGoogle Scholar
  327. 327.
    Coffer PJ, Woodgett JR. Differential subcellular localisation of two isoforms of p70 S6 protein kinase. Biochem Biophys Res Commun. 1994;198(2):780–6.CrossRefPubMedGoogle Scholar
  328. 328.
    Reinhard C, Fernandez A, Lamb NJ, Thomas G. Nuclear localization of p85s6 k: functional requirement for entry into S phase. EMBO J. 1994;13(7):1557–65.PubMedPubMedCentralGoogle Scholar
  329. 329.
    Rosner M, Hengstschlager M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene. 2011;30(44):4509–22.CrossRefPubMedGoogle Scholar
  330. 330.
    Rosner M, Schipany K, Hengstschlager M. p70 S6K1 nuclear localization depends on its mTOR-mediated phosphorylation at T389, but not on its kinase activity towards S6. Amino Acids. 2012;42(6):2251–6.CrossRefPubMedGoogle Scholar
  331. 331.
    Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J, et al. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5’-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol. 2004;24(8):3112–24.CrossRefPubMedPubMedCentralGoogle Scholar
  332. 332.
    Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biology. 2004;166(2):213–23.CrossRefGoogle Scholar
  333. 333.
    Romeo Y, Zhang X, Roux PP. Regulation and function of the RSK family of protein kinases. Biochem J. 2012;441(2):553–69.Google Scholar
  334. 334.
    Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev. 2005;19(18):2199–211.CrossRefPubMedPubMedCentralGoogle Scholar
  335. 335.
    Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL, et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J. 2004;23(8):1761–9.CrossRefPubMedPubMedCentralGoogle Scholar
  336. 336.
    Dennis MD, Jefferson LS, Kimball SR. Role of p70S6K1-mediated phosphorylation of eIF4B and PDCD4 proteins in the regulation of protein synthesis. J Biol Chem. 2012;287(51):42890–9.CrossRefPubMedPubMedCentralGoogle Scholar
  337. 337.
    Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123(4):569–80.CrossRefPubMedGoogle Scholar
  338. 338.
    Martineau Y, Wang X, Alain T, Petroulakis E, Shahbazian D, Fabre B, et al. Control of Paip1-eukayrotic translation initiation factor 3 interaction by amino acids through S6 kinase. Mol Cell Biol. 2014;34(6):1046–53.CrossRefPubMedPubMedCentralGoogle Scholar
  339. 339.
    Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M. S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science. 2006;314(5798):467–71.CrossRefPubMedGoogle Scholar
  340. 340.
    Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20(16):4370–9.CrossRefPubMedPubMedCentralGoogle Scholar
  341. 341.
    Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem. 1998;273(22):14002–7.CrossRefPubMedGoogle Scholar
  342. 342.
    Diggle TA, Denton RM. Characterisation of a novel “22 kDa” phosphoprotein which may be important in insulin action. Biochem Soc Trans. 1995;23(2):209S.CrossRefPubMedGoogle Scholar
  343. 343.
    Tee AR, Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol. 2002;22(6):1674–83.CrossRefPubMedPubMedCentralGoogle Scholar
  344. 344.
    Bidinosti M, Martineau Y, Frank F, Sonenberg N. Repair of isoaspartate formation modulates the interaction of deamidated 4E-BP2 with mTORC1 in brain. J Biol Chem. 2010;285(25):19402–8.CrossRefPubMedPubMedCentralGoogle Scholar
  345. 345.
    Bidinosti M, Ran I, Sanchez-Carbente MR, Martineau Y, Gingras AC, Gkogkas C, et al. Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission. Mol Cell. 2010;37(6):797–808.CrossRefPubMedPubMedCentralGoogle Scholar
  346. 346.
    Gingras AC, Gygi SP, Raught B, Polakiewicz RD, Abraham RT, Hoekstra MF, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev. 1999;13(11):1422–37.CrossRefPubMedPubMedCentralGoogle Scholar
  347. 347.
    Mothe-Satney I, Brunn GJ, McMahon LP, Capaldo CT, Abraham RT, Lawrence JC Jr. Mammalian target of rapamycin-dependent phosphorylation of PHAS-I in four (S/T)P sites detected by phospho-specific antibodies. J Biol Chem. 2000;275(43):33836–43.CrossRefPubMedGoogle Scholar
  348. 348.
    Mothe-Satney I, Yang D, Fadden P, Haystead TA, Lawrence JC Jr. Multiple mechanisms control phosphorylation of PHAS-I in five (S/T)P sites that govern translational repression. Mol Cell Biol. 2000;20(10):3558–67.CrossRefPubMedPubMedCentralGoogle Scholar
  349. 349.
    Shin S, Wolgamott L, Roux PP, Yoon SO. Casein kinase 1epsilon promotes cell proliferation by regulating mRNA translation. Cancer Res. 2014;74(1):201–11.CrossRefPubMedGoogle Scholar
  350. 350.
    Wang X, Li W, Parra JL, Beugnet A, Proud CG. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Mol Cell Biol. 2003;23(5):1546–57.CrossRefPubMedPubMedCentralGoogle Scholar
  351. 351.
    Yang DQ, Kastan MB. Participation of ATM in insulin signalling through phosphorylation of eIF-4E-binding protein 1. Nat Cell Biol. 2000;2(12):893–8.CrossRefPubMedGoogle Scholar
  352. 352.
    Gingras AC, Raught B, Gygi SP, Niedzwiecka A, Miron M, Burley SK, et al. Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev. 2001;15(21):2852–64.PubMedPubMedCentralGoogle Scholar
  353. 353.
    Herbert TP, Tee AR, Proud CG. The extracellular signal-regulated kinase pathway regulates the phosphorylation of 4E-BP1 at multiple sites. J Biol Chem. 2002;277(13):11591–6.CrossRefPubMedGoogle Scholar
  354. 354.
    Livingstone M, Bidinosti M. Rapamycin-insensitive mTORC1 activity controls eIF4E:4E-BP1 binding. F1000Research. 2012;1:4.Google Scholar
  355. 355.
    Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell. 1999;3(6):707–16.CrossRefPubMedGoogle Scholar
  356. 356.
    Tait S, Dutta K, Cowburn D, Warwicker J, Doig AJ, McCarthy JE. Local control of a disorder-order transition in 4E-BP1 underpins regulation of translation via eIF4E. Proc Natl Acad Sci USA. 2010;107(41):17627–32.CrossRefPubMedPubMedCentralGoogle Scholar
  357. 357.
    Tomoo K, Abiko F, Miyagawa H, Kitamura K, Ishida T. Effect of N-terminal region of eIF4E and Ser65-phosphorylation of 4E-BP1 on interaction between eIF4E and 4E-BP1 fragment peptide. J Biochem. 2006;140(2):237–46.CrossRefPubMedGoogle Scholar
  358. 358.
    Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, et al. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature. 2015;519(7541):106–9.CrossRefPubMedGoogle Scholar
  359. 359.
    Fletcher CM, Wagner G. The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci: Publ Protein Soc. 1998;7(7):1639–42.CrossRefGoogle Scholar
  360. 360.
    Fletcher CM, McGuire AM, Gingras AC, Li H, Matsuo H, Sonenberg N, et al. 4E binding proteins inhibit the translation factor eIF4E without folded structure. Biochemistry. 1998;37(1):9–15.CrossRefPubMedGoogle Scholar
  361. 361.
    Hershey PE, McWhirter SM, Gross JD, Wagner G, Alber T, Sachs AB. The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem. 1999;274(30):21297–304.CrossRefPubMedGoogle Scholar
  362. 362.
    Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, et al. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell. 2003;115(6):739–50.CrossRefPubMedGoogle Scholar
  363. 363.
    Tomoo K, Matsushita Y, Fujisaki H, Abiko F, Shen X, Taniguchi T, et al. Structural basis for mRNA Cap-Binding regulation of eukaryotic initiation factor 4E by 4E-binding protein, studied by spectroscopic, X-ray crystal structural, and molecular dynamics simulation methods. Biochim Biophys Acta. 2005;1753(2):191–208.CrossRefPubMedGoogle Scholar
  364. 364.
    Ptushkina M, von der Haar T, Karim MM, Hughes JM, McCarthy JE. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. The EMBO journal. 1999;18(14):4068–75.CrossRefPubMedPubMedCentralGoogle Scholar
  365. 365.
    Denton RM, Tavare JM, Borthwick A, Dickens M, Diggle TA, Edgell NJ, et al. Insulin-activated protein kinases in fat and other cells. Biochem Soc Trans. 1992;20(3):659–64.CrossRefPubMedGoogle Scholar
  366. 366.
    Diggle TA, Denton RM. Comparison of the effects of insulin and adrenergic agonists on the phosphorylation of an acid-soluble 22 kDa protein in rat epididymal fat-pads and isolated fat-cells. Biochem J. 1992;282(Pt 3):729–36.CrossRefPubMedPubMedCentralGoogle Scholar
  367. 367.
    Moule SK, Edgell NJ, Welsh GI, Diggle TA, Foulstone EJ, Heesom KJ, et al. Multiple signalling pathways involved in the stimulation of fatty acid and glycogen synthesis by insulin in rat epididymal fat cells. Biochem J. 1995;311(Pt 2):595–601.CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Le Bacquer O, Petroulakis E, Paglialunga S, Poulin F, Richard D, Cianflone K, et al. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Investig. 2007;117(2):387–96.CrossRefPubMedPubMedCentralGoogle Scholar
  369. 369.
    Tsukiyama-Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nat Med. 2001;7(10):1128–32.CrossRefPubMedGoogle Scholar
  370. 370.
    Yun YS, Kim KH, Tschida B, Sachs Z, Noble-Orcutt KE, Moriarity BS, et al. mTORC1 Coordinates Protein Synthesis and Immunoproteasome Formation via PRAS40 to Prevent Accumulation of Protein Stress. Mol Cell. 2016;61(4):625–39.CrossRefPubMedGoogle Scholar
  371. 371.
    Rapley J, Oshiro N, Ortiz-Vega S, Avruch J. The mechanism of insulin-stimulated 4E-BP protein binding to mammalian target of rapamycin (mTOR) complex 1 and its contribution to mTOR complex 1 signaling. J Biol Chem. 2011;286(44):38043–53.CrossRefPubMedPubMedCentralGoogle Scholar
  372. 372.
    Kazi AA, Lang CH. PRAS40 regulates protein synthesis and cell cycle in C2C12 myoblasts. Mol Med. 2010;16(9–10):359–71.PubMedPubMedCentralGoogle Scholar
  373. 373.
    Tcherkezian J, Cargnello M, Romeo Y, Huttlin EL, Lavoie G, Gygi SP, et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5’TOP mRNA translation. Genes Dev. 2014;28(4):357–71.CrossRefPubMedPubMedCentralGoogle Scholar
  374. 374.
    Aoki K, Adachi S, Homoto M, Kusano H, Koike K, Natsume T. LARP1 specifically recognizes the 3’ terminus of poly(A) mRNA. FEBS Lett. 2013;587(14):2173–8.CrossRefPubMedGoogle Scholar
  375. 375.
    Deragon JM, Bousquet-Antonelli C. The role of LARP1 in translation and beyond. Wiley interdisciplinary reviews RNA. 2015.Google Scholar
  376. 376.
    Bousquet-Antonelli C, Deragon JM. A comprehensive analysis of the La-motif protein superfamily. RNA. 2009;15(5):750–64.CrossRefPubMedPubMedCentralGoogle Scholar
  377. 377.
    Sobel SG, Wolin SL. Two yeast La motif-containing proteins are RNA-binding proteins that associate with polyribosomes. Mol Biol Cell. 1999;10(11):3849–62.CrossRefPubMedPubMedCentralGoogle Scholar
  378. 378.
    Kershaw CJ, Costello JL, Castelli LM, Talavera D, Rowe W, Sims PF, et al. The yeast La related protein Slf1p is a key activator of translation during the oxidative stress response. PLoS Genet. 2015;11(1):e1004903.CrossRefPubMedPubMedCentralGoogle Scholar
  379. 379.
    Chauvet S, Maurel-Zaffran C, Miassod R, Jullien N, Pradel J, Aragnol D. dlarp, a new candidate Hox target in Drosophila whose orthologue in mouse is expressed at sites of epithelium/mesenchymal interactions. Dev Dyn: Official Publ Amer Assoc Anatomists. 2000;218(3):401–13.CrossRefGoogle Scholar
  380. 380.
    Nykamp K, Lee MH, Kimble JC. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA. 2008;14(7):1378–89.CrossRefPubMedPubMedCentralGoogle Scholar
  381. 381.
    Smith RW, Blee TK, Gray NK. Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem Soc Trans. 2014;42(4):1229–37.CrossRefPubMedPubMedCentralGoogle Scholar
  382. 382.
    Merret R, Descombin J, Juan YT, Favory JJ, Carpentier MC, Chaparro C, et al. XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress. Cell Rep. 2013;5(5):1279–93.CrossRefPubMedGoogle Scholar
  383. 383.
    Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. Biochem Biokhimiia. 2012;77(6):562–74.CrossRefGoogle Scholar
  384. 384.
    Li GW, Burkhardt D, Gross C, Weissman JS. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell. 2014;157(3):624–35.CrossRefPubMedPubMedCentralGoogle Scholar
  385. 385.
    Iadevaia V, Caldarola S, Tino E, Amaldi F, Loreni F. All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5’-terminal oligopyrimidine (TOP) mRNAs. RNA. 2008;14(9):1730–6.CrossRefPubMedPubMedCentralGoogle Scholar
  386. 386.
    Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. Biochimica et biophysica acta. 2014.Google Scholar
  387. 387.
    Levy S, Avni D, Hariharan N, Perry RP, Meyuhas O. Oligopyrimidine tract at the 5’ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA. 1991;88(8):3319–23.CrossRefPubMedPubMedCentralGoogle Scholar
  388. 388.
    Avni D, Shama S, Loreni F, Meyuhas O. Vertebrate mRNAs with a 5’-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element. Mol Cell Biol. 1994;14(6):3822–33.CrossRefPubMedPubMedCentralGoogle Scholar
  389. 389.
    Shama S, Meyuhas O. The translational cis-regulatory element of mammalian ribosomal protein mRNAs is recognized by the plant translational apparatus. Eur J Biochem/FEBS. 1996;236(2):383–8.CrossRefGoogle Scholar
  390. 390.
    Biberman Y, Meyuhas O. Substitution of just five nucleotides at and around the transcription start site of rat beta-actin promoter is sufficient to render the resulting transcript a subject for translational control. FEBS Lett. 1997;405(3):333–6.CrossRefPubMedGoogle Scholar
  391. 391.
    Biberman Y, Meyuhas O. TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate. FEBS Lett. 1999;456(3):357–60.CrossRefPubMedGoogle Scholar
  392. 392.
    Loreni F, Amaldi F. Translational control of terminal oligopyrimidine mRNAs requires a specific regulator. FEBS Lett. 1997;416(3):239–42.CrossRefPubMedGoogle Scholar
  393. 393.
    Pellizzoni L, Cardinali B, Lin-Marq N, Mercanti D, Pierandrei-Amaldi P. A Xenopus laevis homologue of the La autoantigen binds the pyrimidine tract of the 5’ UTR of ribosomal protein mRNAs in vitro: implication of a protein factor in complex formation. J Mol Biol. 1996;259(5):904–15.CrossRefPubMedGoogle Scholar
  394. 394.
    Pellizzoni L, Lotti F, Maras B, Pierandrei-Amaldi P. Cellular nucleic acid binding protein binds a conserved region of the 5’ UTR of Xenopus laevis ribosomal protein mRNAs. J Mol Biol. 1997;267(2):264–75.CrossRefPubMedGoogle Scholar
  395. 395.
    Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G. Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997;16(12):3693–704.CrossRefPubMedPubMedCentralGoogle Scholar
  396. 396.
    Crosio C, Boyl PP, Loreni F, Pierandrei-Amaldi P, Amaldi F. La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res. 2000;28(15):2927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  397. 397.
    Cardinali B, Carissimi C, Gravina P, Pierandrei-Amaldi P. La protein is associated with terminal oligopyrimidine mRNAs in actively translating polysomes. J Biol Chem. 2003;278(37):35145–51.CrossRefPubMedGoogle Scholar
  398. 398.
    Damgaard CK, Lykke-Andersen J. Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR. Genes Dev. 2011;25(19):2057–68.CrossRefPubMedPubMedCentralGoogle Scholar
  399. 399.
    Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485(7396):55–61.CrossRefPubMedPubMedCentralGoogle Scholar
  400. 400.
    Han K, Jaimovich A, Dey G, Ruggero D, Meyuhas O, Sonenberg N, et al. Parallel measurement of dynamic changes in translation rates in single cells. Nat Methods. 2014;11(1):86–93.CrossRefPubMedGoogle Scholar
  401. 401.
    Terada N, Patel HR, Takase K, Kohno K, Nairn AC, Gelfand EW. Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci USA. 1994;91(24):11477–81.CrossRefPubMedPubMedCentralGoogle Scholar
  402. 402.
    Tang H, Hornstein E, Stolovich M, Levy G, Livingstone M, Templeton D, et al. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation. Mol Cell Biol. 2001;21(24):8671–83.CrossRefPubMedPubMedCentralGoogle Scholar
  403. 403.
    Lahr RM, Mack SM, Heroux A, Blagden SP, Bousquet-Antonelli C, Deragon JM, et al. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5’TOP sequence. Nucleic Acids Res. 2015;43(16):8077–88.CrossRefPubMedPubMedCentralGoogle Scholar
  404. 404.
    Mura M, Hopkins TG, Michael T, Abd-Latip N, Weir J, Aboagye E, et al. LARP1 post-transcriptionally regulates mTOR and contributes to cancer progression. Oncogene. 2015;34(39):5025–36.CrossRefPubMedGoogle Scholar
  405. 405.
    Larsson O, Morita M, Topisirovic I, Alain T, Blouin MJ, Pollak M, et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc Natl Acad Sci USA. 2012;109(23):8977–82.CrossRefPubMedPubMedCentralGoogle Scholar
  406. 406.
    Morita M, Gravel SP, Chenard V, Sikstrom K, Zheng L, Alain T, et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 2013;18(5):698–711.CrossRefPubMedGoogle Scholar
  407. 407.
    Lipton JO, Sahin M. The neurology of mTOR. Neuron. 2014;84(2):275–91.CrossRefPubMedPubMedCentralGoogle Scholar
  408. 408.
    Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front Mol Neurosci. 2014;7:28.CrossRefPubMedPubMedCentralGoogle Scholar
  409. 409.
    Hebb DO. The organization of behavior; a neuropsychological theory. New York,: Wiley; 1949. xix, 335 p.Google Scholar
  410. 410.
    Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711.CrossRefPubMedGoogle Scholar
  411. 411.
    Emes RD, Grant SG. Evolution of synapse complexity and diversity. Annu Rev Neurosci. 2012;35:111–31.CrossRefPubMedGoogle Scholar
  412. 412.
    Moroz LL, Kohn AB. Independent origins of neurons and synapses: insights from ctenophores. Philos Trans R Soc Lond B Biol Sci. 2016;371(1685):20150041.CrossRefPubMedPubMedCentralGoogle Scholar
  413. 413.
    Sossin WS, Lacaille JC. Mechanisms of translational regulation in synaptic plasticity. Curr Opin Neurobiol. 2010;20(4):450–6.CrossRefPubMedPubMedCentralGoogle Scholar
  414. 414.
    Sutton MA, Schuman EM. Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol. 2005;64(1):116–31.CrossRefPubMedGoogle Scholar
  415. 415.
    Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron. 2009;61(1):10–26.CrossRefPubMedGoogle Scholar
  416. 416.
    Richter JD, Klann E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 2009;23(1):1–11.CrossRefPubMedGoogle Scholar
  417. 417.
    Liu-Yesucevitz L, Bassell GJ, Gitler AD, Hart AC, Klann E, Richter JD, et al. Local RNA translation at the synapse and in disease. J Neurosci: official J Soc Neurosci. 2011;31(45):16086–93.CrossRefGoogle Scholar
  418. 418.
    Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L, Galiano M, et al. mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci. 2013.Google Scholar
  419. 419.
    Dossani RH, Missios S, Nanda A. The Legacy of Henry Molaison (1926-2008) and the Impact of His Bilateral Mesial Temporal Lobe Surgery on the Study of Human Memory. World Neurosurg. 2015;84(4):1127–35.CrossRefPubMedGoogle Scholar
  420. 420.
    Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, et al. Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science. 2009;324(5934):1536–40.CrossRefPubMedPubMedCentralGoogle Scholar
  421. 421.
    Tatavarty V, Ifrim MF, Levin M, Korza G, Barbarese E, Yu J, et al. Single-molecule imaging of translational output from individual RNA granules in neurons. Mol Biol Cell. 2012;23(5):918–29.CrossRefPubMedPubMedCentralGoogle Scholar
  422. 422.
    Flexner JB, Flexner LB, Stellar E. Memory in mice as affected by intracerebral puromycin. Science. 1963;141(3575):57–9.CrossRefPubMedGoogle Scholar
  423. 423.
    Debiec J, LeDoux JE, Nader K. Cellular and systems reconsolidation in the hippocampus. Neuron. 2002;36(3):527–38.CrossRefPubMedGoogle Scholar
  424. 424.
    Nader K, Schafe GE, Le Doux JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000;406(6797):722–6.CrossRefPubMedGoogle Scholar
  425. 425.
    Tischmeyer W, Schicknick H, Kraus M, Seidenbecher CI, Staak S, Scheich H, et al. Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. Eur J Neurosci. 2003;18(4):942–50.CrossRefPubMedGoogle Scholar
  426. 426.
    Parsons RG, Gafford GM, Helmstetter FJ. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J Neurosci: Official J Soc Neurosci. 2006;26(50):12977–83.CrossRefGoogle Scholar
  427. 427.
    Bekinschtein P, Katche C, Slipczuk LN, Igaz LM, Cammarota M, Izquierdo I, et al. mTOR signaling in the hippocampus is necessary for memory formation. Neurobiol Learn Mem. 2007;87(2):303–7.CrossRefPubMedGoogle Scholar
  428. 428.
    Blundell J, Kouser M, Powell CM. Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiol Learn Mem. 2008;90(1):28–35.CrossRefPubMedPubMedCentralGoogle Scholar
  429. 429.
    Belelovsky K, Kaphzan H, Elkobi A, Rosenblum K. Biphasic activation of the mTOR pathway in the gustatory cortex is correlated with and necessary for taste learning. J Neurosci: Official J Soc Neurosci. 2009;29(23):7424–31.CrossRefGoogle Scholar
  430. 430.
    Glover EM, Ressler KJ, Davis M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs. cued fear memories. Learn Mem. 2010;17(11):577–81.CrossRefPubMedPubMedCentralGoogle Scholar
  431. 431.
    Gafford GM, Parsons RG, Helmstetter FJ. Consolidation and reconsolidation of contextual fear memory requires mammalian target of rapamycin-dependent translation in the dorsal hippocampus. Neuroscience. 2011;182:98–104.CrossRefPubMedPubMedCentralGoogle Scholar
  432. 432.
    Deli A, Schipany K, Rosner M, Hoger H, Pollak A, Li L, et al. Blocking mTORC1 activity by rapamycin leads to impairment of spatial memory retrieval but not acquisition in C57BL/6J mice. Behav Brain Res. 2012;229(2):320–4.CrossRefPubMedGoogle Scholar
  433. 433.
    Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience. 2012;223:102–13.CrossRefPubMedPubMedCentralGoogle Scholar
  434. 434.
    Jobim PF, Pedroso TR, Christoff RR, Werenicz A, Maurmann N, Reolon GK, et al. Inhibition of mTOR by rapamycin in the amygdala or hippocampus impairs formation and reconsolidation of inhibitory avoidance memory. Neurobiol Learn Mem. 2012;97(1):105–12.CrossRefPubMedGoogle Scholar
  435. 435.
    Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.CrossRefPubMedPubMedCentralGoogle Scholar
  436. 436.
    Pinsker HM, Hening WA, Carew TJ, Kandel ER. Long-term sensitization of a defensive withdrawal reflex in Aplysia. Science. 1973;182(4116):1039–42.CrossRefPubMedGoogle Scholar
  437. 437.
    Stanton PK, Sarvey JM. Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci: Official J Soc Neurosci. 1984;4(12):3080–8.Google Scholar
  438. 438.
    Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S. A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science. 1986;234(4781):1249–54.CrossRefPubMedGoogle Scholar
  439. 439.
    Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33(3):253–8.CrossRefPubMedGoogle Scholar
  440. 440.
    Huber KM, Roder JC, Bear MF. Chemical induction of mGluR5- and protein synthesis–dependent long-term depression in hippocampal area CA1. J Neurophysiol. 2001;86(1):321–5.PubMedGoogle Scholar
  441. 441.
    Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A. 2002;99(1):467–72.CrossRefPubMedGoogle Scholar
  442. 442.
    Panja D, Dagyte G, Bidinosti M, Wibrand K, Kristiansen AM, Sonenberg N, et al. Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J Biol Chem. 2009;284(46):31498–511.CrossRefPubMedPubMedCentralGoogle Scholar
  443. 443.
    Panja D, Kenney JW, D’Andrea L, Zalfa F, Vedeler A, Wibrand K, et al. Two-stage translational control of dentate gyrus LTP consolidation is mediated by sustained BDNF-TrkB signaling to MNK. Cell Rep. 2014;9(4):1430–45.CrossRefPubMedGoogle Scholar
  444. 444.
    Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y, Salas C. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull. 2002;57(3–4):499–503.CrossRefPubMedGoogle Scholar
  445. 445.
    Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell. 1999;99(2):221–37.CrossRefPubMedGoogle Scholar
  446. 446.
    Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 2002;36(1):121–37.CrossRefPubMedGoogle Scholar
  447. 447.
    Kempermann G. New neurons for ‘survival of the fittest’. Nat Rev Neurosci. 2012;13(10):727–36.PubMedGoogle Scholar
  448. 448.
    Schmidt-Hieber C, Jonas P, Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184–7.CrossRefPubMedGoogle Scholar
  449. 449.
    Kassabov SR, Choi YB, Karl KA, Vishwasrao HD, Bailey CH, Kandel ER. A single Aplysia neurotrophin mediates synaptic facilitation via differentially processed isoforms. Cell Rep. 2013;3(4):1213–27.CrossRefPubMedPubMedCentralGoogle Scholar
  450. 450.
    Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, et al. Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem. 2008;15(1):29–38.CrossRefPubMedPubMedCentralGoogle Scholar
  451. 451.
    Pearce LR, Alton GR, Richter DT, Kath JC, Lingardo L, Chapman J, et al. Characterization of PF-4708671, a novel and highly specific inhibitor of p70 ribosomal S6 kinase (S6K1). Biochem J. 2010;431(2):245–55.CrossRefPubMedGoogle Scholar
  452. 452.
    Huynh TN, Santini E, Klann E. Requirement of Mammalian target of rapamycin complex 1 downstream effectors in cued fear memory reconsolidation and its persistence. J Neurosci: Official J Soc Neurosci. 2014;34(27):9034–9.CrossRefGoogle Scholar
  453. 453.
    Mac Callum PE, Hebert M, Adamec RE, Blundell J. Systemic inhibition of mTOR kinase via rapamycin disrupts consolidation and reconsolidation of auditory fear memory. Neurobiol Learn Mem. 2014;112:176–85.Google Scholar
  454. 454.
    Im HI, Nakajima A, Gong B, Xiong X, Mamiya T, Gershon ES, et al. Post-training dephosphorylation of eEF-2 promotes protein synthesis for memory consolidation. PLoS ONE. 2009;4(10):e7424.CrossRefPubMedPubMedCentralGoogle Scholar
  455. 455.
    Gildish I, Manor D, David O, Sharma V, Williams D, Agarwala U, et al. Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learn Mem. 2012;19(3):116–25.CrossRefPubMedPubMedCentralGoogle Scholar
  456. 456.
    McCamphill PK, Farah CA, Anadolu MN, Hoque S, Sossin WS. Bidirectional regulation of eEF2 phosphorylation controls synaptic plasticity by decoding neuronal activity patterns. J Neurosci: Official J Soc Neurosci. 2015;35(10):4403–17.CrossRefGoogle Scholar
  457. 457.
    Graber TE, Hebert-Seropian S, Khoutorsky A, David A, Yewdell JW, Lacaille JC, et al. Reactivation of stalled polyribosomes in synaptic plasticity. Proc Natl Acad Sci U S A. 2013;110(40):16205–10.CrossRefPubMedPubMedCentralGoogle Scholar
  458. 458.
    Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci: Official J S Neurosci. 2010;30(2):694–702.CrossRefGoogle Scholar
  459. 459.
    Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci. 2013;16(11):1530–6.CrossRefPubMedPubMedCentralGoogle Scholar
  460. 460.
    Buxbaum AR, Wu B, Singer RH. Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science. 2014;343(6169):419–22.CrossRefPubMedPubMedCentralGoogle Scholar
  461. 461.
    Ceman S, O’Donnell WT, Reed M, Patton S, Pohl J, Warren ST. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet. 2003;12(24):3295–305.CrossRefPubMedGoogle Scholar
  462. 462.
    Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L, Laur O, et al. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol Cell. 2011;42(5):673–88.CrossRefPubMedPubMedCentralGoogle Scholar
  463. 463.
    Narayanan U, Nalavadi V, Nakamoto M, Thomas G, Ceman S, Bassell GJ, et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J Biol Chem. 2008;283(27):18478–82.CrossRefPubMedPubMedCentralGoogle Scholar
  464. 464.
    Niere F, Wilkerson JR, Huber KM. Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression. J Neurosci: Official J Soc Neurosci. 2012;32(17):5924–36.CrossRefGoogle Scholar
  465. 465.
    Till SM, Li HL, Miniaci MC, Kandel ER, Choi YB. A presynaptic role for FMRP during protein synthesis-dependent long-term plasticity in Aplysia. Learn Mem. 2011;18(1):39–48.CrossRefPubMedPubMedCentralGoogle Scholar
  466. 466.
    Banko JL, Poulin F, Hou L, DeMaria CT, Sonenberg N, Klann E. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J Neurosci: Official J Soc Neurosci. 2005;25(42):9581–90.CrossRefGoogle Scholar
  467. 467.
    Banko JL, Hou L, Poulin F, Sonenberg N, Klann E. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J Neurosci: Official J Soc Neurosci. 2006;26(8):2167–73.CrossRefGoogle Scholar
  468. 468.
    Weatherill DB, Dyer J, Sossin WS. Ribosomal protein S6 kinase is a critical downstream effector of the target of rapamycin complex 1 for long-term facilitation in Aplysia. J Biol Chem. 2010;285(16):12255–67.CrossRefPubMedPubMedCentralGoogle Scholar
  469. 469.
    Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, et al. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol. 2009;29(3):640–9.CrossRefPubMedGoogle Scholar
  470. 470.
    Moccia R, Chen D, Lyles V, Kapuya E, Kalachikov S, et al. An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci: Official J Soc Neurosci. 2003;23(28):9409–17.Google Scholar
  471. 471.
    Poon MM, Choi SH, Jamieson CA, Geschwind DH, Martin KC. Identification of process-localized mRNAs from cultured rodent hippocampal neurons. J Neurosci: Official J Soc Neurosci. 2006;26(51):13390–9.CrossRefGoogle Scholar
  472. 472.
    Tsokas P, Grace EA, Chan P, Ma T, Sealfon SC, Iyengar R, et al. Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J Neurosci: Official J Soc Neurosci. 2005;25(24):5833–43.CrossRefGoogle Scholar
  473. 473.
    Gobert D, Topolnik L, Azzi M, Huang L, Badeaux F, Desgroseillers L, et al. Forskolin induction of late-LTP and up-regulation of 5’ TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells. J Neurochem. 2008;106(3):1160–74.CrossRefPubMedGoogle Scholar
  474. 474.
    Slavov N, Semrau S, Airoldi E, Budnik B, van Oudenaarden A. Differential Stoichiometry among Core Ribosomal Proteins. Cell Rep. 2015;13(5):865–73.CrossRefPubMedPubMedCentralGoogle Scholar
  475. 475.
    Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol. 2016.Google Scholar
  476. 476.
    McClatchy DB, Fang G, Levey AI. Elongation factor 1A family regulates the recycling of the M4 muscarinic acetylcholine receptor. Neurochem Res. 2006;31(7):975–88.CrossRefPubMedGoogle Scholar
  477. 477.
    Siuta MA, Robertson SD, Kocalis H, Saunders C, Gresch PJ, Khatri V, et al. Dysregulation of the norepinephrine transporter sustains cortical hypodopaminergia and schizophrenia-like behaviors in neuronal rictor null mice. PLoS Biol. 2010;8(6):e1000393.CrossRefPubMedPubMedCentralGoogle Scholar
  478. 478.
    Carson RP, Fu C, Winzenburger P, Ess KC. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum Mol Genet. 2013;22(1):140–52.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bruno D. Fonseca
    • 1
    Email author
  • Tyson E. Graber
    • 1
  • Huy-Dung Hoang
    • 1
  • Asier González
    • 2
  • Alexander A. Soukas
    • 3
  • Greco Hernández
    • 4
  • Tommy Alain
    • 1
  • Stephanie L. Swift
    • 1
  • Ronit Weisman
    • 5
    • 6
  • Christian Meyer
    • 7
  • Christophe Robaglia
    • 8
    • 9
    • 10
  • Joseph Avruch
    • 3
  • Michael N. Hall
    • 2
  1. 1.Children’s Hospital of Eastern Ontario Research InstituteOttawaCanada
  2. 2.Biozentrum, University of BaselBaselSwitzerland
  3. 3.Massachusetts General HospitalBostonUSA
  4. 4.Division of Basic ScienceNational Institute of CancerMexico CityMexico
  5. 5.Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityTel AvivIsrael
  6. 6.Department of Natural and Life SciencesThe Open University of IsraelRaananaIsrael
  7. 7.Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, AgroParisTech, ERL CNRS 3559, Saclay Plant SciencesVersailles CedexFrance
  8. 8.Aix-Marseille Université, Laboratoire de Génétique et Biophysique des PlantesMarseilleFrance
  9. 9.CNRS, UMR 7265 Biologie Végétale & Microbiologie EnvironnementalesMarseilleFrance
  10. 10.CEA, IBEBMarseilleFrance

Personalised recommendations