Advertisement

The Unique Evolutionary Distribution of Eukaryotic Elongation Factor 3

  • Maria Mateyak
  • Arjun N. Sasikumar
  • Stephen Dunaway
  • Terri Goss KinzyEmail author
Chapter

Abstract

Translation, the mechanism by which proteins are synthesized based on the information encoded in mRNA, is an essential process in all living organisms. Consisting of initiation, elongation and termination phases, many aspects of this process are conserved across bacteria and eukaryotes. The elongation phase, in particular, has several well-conserved steps and universally requires two protein elongation (EF) factors. However, fungal translation elongation was determined to be unique in its absolute requirement for a third factor, the ATPase eEF3. While the exact function of eEF3 is unclear, eEF3 binds close to the E-site of the ribosome and has been proposed to facilitate the removal of deacylated tRNA from the E-site. Originally described as a “fungal-specific factor,” recent bioinformatic analysis of eEF3 distribution challenges this designation as eEF3-like proteins are found in other lower order eukaryotes. In agreement with its role as an ATPase, all the putative eEF3 homologs identified have two ABC domains. Critical residues of the two ABC domains involved in nucleotide binding and hydrolysis were highly conserved in all the putative eEF3 homologs identified, supporting the functional role of the homologs as ATPases. The HEAT and chromodomain regions, both of which have been implicated in ribosomal interactions, are less conserved than the ABC domains. Further analysis of these putative eEF3s may facilitate the elucidation of the critical functions of eEF3 in translation elongation and shed light on how the protein synthesis machinery evolved from bacteria to fungi to higher eukaryotes.

Keywords

Nucleotide Binding Domain Peptide Bond Formation Heat Repeat Eukaryotic Tree Helical Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lorsch JR, Dever TE. Molecular view of 43 S complex formation and start site selection in eukaryotic translation initiation. J Biol Chem. 2010;285(28):21203–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hinnebusch AG, Dever TE, Asano K. Mechanism of translation initiation in the yeast saccharomyces cerevisae. In: Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control in biology and medicine. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2007. p. 225–68.Google Scholar
  3. 3.
    Merrick WC, Nyborg J. The protein biosynthesis elongation cycle. In: Sonenberg N, Hershey JWB, Mathews MB, editors. Translational control of gene expression. Cold Spring Harbor: Cold Spring Harbor Laboratory; 2000. p. 89–126.Google Scholar
  4. 4.
    Jackson RJ, Hellen CU, Pestova TV. Termination and post-termination events in eukaryotic translation. Adv Protein Chem Struct Biol. 2012;86:45–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Valente L, Kinzy TG. Yeast as a sensor of factors affecting the accuracy of protein synthesis. Cell Mol Life Sci. 2003;60(10):2115–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Carvalho MG, Carvalho JF, Merrick WC. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes. Arch Biochem Biophys. 1984;234:603–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Rodnina MV, Pape T, Fricke R, Kuhn L, Wintermeyer W. Initial binding of the elongation factor Tu•GTP•aminoacyl-tRNA complex preceding codon recognition on the ribosome. J Biol Chem. 1996;271:646–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Pittman YR, Valente L, Jeppesen MG, Andersen GR, Patel S, Kinzy TG. Mg2 + and a key lysine modulate exchange activity of eukaryotic translation elongation factor 1B alpha. J Biol Chem. 2006;281(28):19457–68.CrossRefPubMedGoogle Scholar
  9. 9.
    Saha SK, Chakraburtty K. Protein synthesis in yeast. Isolation of variant forms of elongation factor 1 from the yeast Saccharomyces cerevisiae. J Biol Chem. 1986;261:12599–603.PubMedGoogle Scholar
  10. 10.
    Slobin LI, Moller W. Purification and properties of an elongation factor functionally analogous to bacterial elongation factor Ts from embryos of Artemia salina. Eur J Biochem. 1978;84:69–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Hiraga K, Suzuki K, Tsuchiya E, Miyakawa T. Cloning and characterization of the elongation factor EF-1b homologue of Saccharomyces cerevisiae. EF-1b is essential for growth. FEBS Lett. 1993;316:165–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Olarewaju O, Ortiz PA, Chowdhury W, Chatterjee I, Kinzy TG. The translation elongation factor, eEF1B, plays a role in the oxidative stress response pathway. RNA Biol. 2004;1:12–7.CrossRefGoogle Scholar
  13. 13.
    Esposito AM, Kinzy TG. The eukaryotic translation elongation Factor 1Bgamma has a non-guanine nucleotide exchange factor role in protein metabolism. J Biol Chem. 2010;285(49):37995–8004.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Skogerson L, Wakatama E. A ribosome-dependent GTPase from yeast distinct from elongation factor 2. Proc Natl Acad Sci USA. 1976;73:73–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Dasmahapatra B, Chakraburtty K. Purification and properties of elongation factor 3 from Saccharomyces cerevisiae. J Biol Chem. 1981;256:9999–10004.PubMedGoogle Scholar
  16. 16.
    Colthurst DR, Santos M, Grant CM, Tuite MF. Candida albicans and three other Candida species contain an elongation factor structurally and functionally analogous to elongation factor 3. FEMS Microbiol Lett. 1991;64(1):45–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Uritani M, Miyazaki M. Characterization of the ATPase and GTPase activities of the elongation factor 3 (EF-3) from yeasts. J Biochem. 1988;103:522–30.PubMedGoogle Scholar
  18. 18.
    Blakely G, Hekman J, Chakraburtty K, Williamson PR. Evolutionary divergence of an elongation factor 3 from Cryptococcus neoformans. J Bact. 2001;183:2241–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu J, Kiel MC, Golshani A, Chosay JG, Aoki H, Ganoza MC. Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes. Nucleic Acids Res. 2006;34(4):1158–65.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Skogerson L, Engelhardt D. Dissimilarity in protein chain elongation factor requirements between yeast and rat liver ribosomes. J Biol Chem. 1977;252(4):1471–5.PubMedGoogle Scholar
  21. 21.
    Qin S, Xie A, Bonato MCM, McLaughlin CS. Sequence analysis of the translational elongation factor 3 from Saccharomyces cerevisiae. J Biol Chem. 1990;265:1903–12.PubMedGoogle Scholar
  22. 22.
    Anand M, Chakraburtty K, Marton MJ, Hinnebusch AG, Kinzy TG. Functional interactions between yeast translation eukaryotic elongation factor (eEF) 1A and eEF3. J Biol Chem. 2003;278(9):6985–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Anand M, Balar B, Ulloque R, Gross SR, Kinzy TG. Domain and nucleotide dependence of the interaction between Saccharomyces cerevisiae translation elongation factors 3 and 1A. J Biol Chem. 2006;281(43):32318–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Triana-Alonso FJ, Chakraburtty K, Nierhaus KH. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J Biol Chem. 1995;270(35):20473–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Kamath A, Chakraburtty K. Role of yeast elongation factor 3 in the elongation cycle. J Biol Chem. 1989;264:15423–8.PubMedGoogle Scholar
  26. 26.
    Uritani M, Miyazaki M. Role of the yeast peptide elongation factor 3 (EF-3) at the AA-tRNA binding step. J Biochem. 1988;104:118–26.PubMedGoogle Scholar
  27. 27.
    Andersen CB, Becker T, Blau M, Anand M, Halic M, Balar B, et al. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature. 2006;443(7112):663–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hollenstein K, Dawson RJ, Locher KP. Structure and mechanism of ABC transporter proteins. Curr Opin Struct Biol. 2007;17(4):412–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Decottignies A, Goffeau A. Complete inventory of the yeast ABC proteins. Nat Genet. 1997;15(2):137–45.CrossRefPubMedGoogle Scholar
  31. 31.
    Sarthy AV, McGonigal T, Capobianco JO, Schmidt M, Green SR, Moehle CM, et al. Identification and kinetic analysis of a functional homolog of elongation factor 3, YEF3 in Saccharomyces cerevisiae. Yeast. 1998;14:239–53.CrossRefPubMedGoogle Scholar
  32. 32.
    Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nat Genet. 1995;11(2):115–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Sasikumar AN, Kinzy TG. Mutations in the Chromodomain-like Insertion of Translation Elongation Factor 3 Compromise Protein Synthesis through Reduced ATPase Activity. J Biol Chem. 2014;289(8):4853–60.CrossRefPubMedGoogle Scholar
  34. 34.
    Pace NR. A molecular view of microbial diversity and the biosphere. Science. 1997;276(5313):734–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Kovalchuke O, Chakraburtty K. Comparative analysis of ribosome-associated adenosinetriphosphatase (ATPase) from pig liver and the ATPase of elongation factor 3 from Saccharomyces cerevisiae. Eur J Biochem. 1994;226(1):133–40.CrossRefPubMedGoogle Scholar
  36. 36.
    El’skaya AV, Ovcharenko GV, Palchevskii SS, Petrushenko ZM, Triana-Alonso FJ, Nierhaus KH. Three tRNA binding sites in rabbit liver ribosomes and role of the intrinsic ATPase in 80S ribosomes from higher eukaryotes. Biochemistry. 1997;36(34):10492–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Rodnina MV, Serebryanik AI, Ovcharenko GV, El’Skaya AV. ATPase strongly bound to higher eukaryotic ribosomes. Eur J Biochem. 1994;225(1):305–10.CrossRefPubMedGoogle Scholar
  38. 38.
    Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR. Current challenges in the management of invasive fungal infections. J Infect Chemother Official J Jpn Soc Chemother. 2008;14(2):77–85.CrossRefGoogle Scholar
  39. 39.
    Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. Aids. 2009;23(4):525–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Kupferschmidt K. Mycology: Attack of the clones. Science. 2012;337(6095):636–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA. 1998;95(15):9031–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, et al. Bat white-nose syndrome: an emerging fungal pathogen? Science. 2009;323(5911):227.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Mateyak
    • 1
  • Arjun N. Sasikumar
    • 1
  • Stephen Dunaway
    • 2
  • Terri Goss Kinzy
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical SchoolRutgers, the State University of New JerseyNJUSA
  2. 2.Department of BiologyDrew UniversityMadisonUSA

Personalised recommendations