Advertisement

Towards a Topological Fingerprint of Music

  • Mattia G. BergomiEmail author
  • Adriano Baratè
  • Barbara Di Fabio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)

Abstract

Can music be represented as a meaningful geometric and topological object? In this paper, we propose a strategy to describe some music features as a polyhedral surface obtained by a simplicial interpretation of the Tonnetz. The Tonnetz is a graph largely used in computational musicology to describe the harmonic relationships of notes in equal tuning. In particular, we use persistent homology in order to describe the persistent properties of music encoded in the aforementioned model. Both the relevance and the characteristics of this approach are discussed by analyzing some paradigmatic compositional styles. Eventually, the task of automatic music style classification is addressed by computing the hierarchical clustering of the topological fingerprints associated with some collections of compositions.

Keywords

Music Classification Clustering Tonnetz Persistent homology 

References

  1. 1.
    Bergomi, M.G.: Dynamical and Topological Tools for (Modern) Music Analysis. Ph.D. thesis, Université Pierre et Marie Curie (2015)Google Scholar
  2. 2.
    Bigo, L., Andreatta, M., Giavitto, J.-L., Michel, O., Spicher, A.: Computation and visualization of musical structures in chord-based simplicial complexes. In: Yust, J., Wild, J., Burgoyne, J.A. (eds.) MCM 2013. LNCS, vol. 7937, pp. 38–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Brinkmann, R.: Arnold Schönberg, drei Klavierstücke Op. 11: Studien zur frühen Atonalität bei Schönberg. Franz Steiner Verlag (1969)Google Scholar
  4. 4.
    Burns, E.M., Ward, W.D.: Intervals, scales, and tuning. Psychol. Music 2, 215–264 (1999)CrossRefGoogle Scholar
  5. 5.
    Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Meth. Appl. Sci. 36(12), 1543–1557 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their “Tonnetz” representations. J. Music Theor. 41, 1–66 (1997)CrossRefGoogle Scholar
  9. 9.
    d’Amico, M., Frosini, P., Landi, C.: Using matching distance in size theory: a survey. Int. J. Imag. Syst. Tech. 16(5), 154–161 (2006)CrossRefGoogle Scholar
  10. 10.
    d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Applicandae Mathematicae 109(2), 527–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    De Cheveigne, A.: Pitch perception models. In: Plack, C.J., Fay, R.R., Oxenham, A.J., Popper, A.N. (eds.) Pitch, pp. 169–233. Springer, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformations, and modes of limited transposition. J. Music Theor. 42, 241–263 (1998)CrossRefGoogle Scholar
  13. 13.
    Dowling, W.J.: Recognition of melodic transformations: inversion, retrograde, and retrograde inversion. Percept. Psychophys. 12(5), 417–421 (1972)CrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Euler, L.: De harmoniae veris principiis per speculum musicum repraesentatis. Opera Omnia 3(2), 568–586 (1774)Google Scholar
  17. 17.
    Folgieri, R., Bergomi, M.G., Castellani, S.: EEG-based brain-computer interface for emotional involvement in games through music. In: Lee, N. (ed.) Digital Da Vinci. Computers in Music, pp. 205–236. Springer, New York (2014)CrossRefGoogle Scholar
  18. 18.
    Frosini, P., Landi, C.: Size theory as a topological tool for computer vision. Pattern Recogn. Image Anal. 9, 596–603 (1999)Google Scholar
  19. 19.
    Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Comm. Comput. 12(4), 327–349 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Harte, C., Sandler, M.: Automatic chord identifcation using a quantised chromagram. In: Audio Engineering Society Convention 118. Audio Engineering Society (2005)Google Scholar
  21. 21.
    Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5), 719–720 (2008)CrossRefGoogle Scholar
  22. 22.
    Li, T.L., Chan, A.B., Chun, A.: Automatic musical pattern feature extraction using convolutional neural network. In: Proceedings of International Conference on Data Mining and Applications (2010)Google Scholar
  23. 23.
    Martinez, W.L., Martinez, A., Solka, J.: Exploratory Data Analysis with MATLAB. CRC Press, Boca Raton (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Ogdon, W.: How tonality functions in Shoenberg Opus-11, Number-1. J. Arnold Schoenberg Inst. 5(2), 169–181 (1981)Google Scholar
  25. 25.
    Ott, N.: Visualization of Hierarchical Clustering: Graph Types and Software Tools. GRIN Verlag, Munich (2009)Google Scholar
  26. 26.
    Plomp, R., Levelt, W.J.: Tonal consonance and critical bandwidth. J. Acoust. Soc. Am. 38(4), 548–560 (1965)CrossRefGoogle Scholar
  27. 27.
    Smaragdis, P., Brown, J.C.: Non-negative matrix factorization for polyphonic music transcription. In: 2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 177–180. IEEE (2003)Google Scholar
  28. 28.
    Trezise, S.: The Cambridge Companion to Debussy. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  29. 29.
    Tulipano, L., Bergomi, M.G.: Meaning, music and emotions: a neural activity analysis. In: NEA Science. pp. 105–108 (2015)Google Scholar
  30. 30.
    Wang, A., et al.: An Industrial Strength Audio Search Algorithm. In: ISMIR. pp. 7–13 (2003)Google Scholar
  31. 31.
    William, B.: Harmony in Radical European Music. In: Society of Music Theory (1984)Google Scholar
  32. 32.
    Žabka, M.: Generalized Tonnetz and well-formed GTS: a scale theory inspired by the neo-riemannians. In: Chew, E., Childs, A., Chuan, C.-H. (eds.) MCM 2009. CCIS, vol. 38, pp. 286–298. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mattia G. Bergomi
    • 1
    Email author
  • Adriano Baratè
    • 2
  • Barbara Di Fabio
    • 3
  1. 1.Champalimaud Neuroscience ProgrammeChampalimaud Centre for the UnknownLisbonPortugal
  2. 2.Laboratorio di Informatica MusicaleUniversità degli Studi di MilanoMilanoItaly
  3. 3.Dipartimento di Scienze e Metodi dell’IngegneriaUniversità di Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations