Advertisement

Computing the Overlaps of Two Maps

  • Jean-Christophe JanodetEmail author
  • Colin de la Higuera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)

Abstract

Two combinatorial maps \(M_1\) and \(M_2\) overlap if they share a sub-map, called an overlapping pattern, which can be extended without conflicting neither with \(M_1\) nor with \(M_2\). Isomorphism and subisomorphism are two particular cases of map overlaps which have been studied in the literature. In this paper, we show that finding the largest connected overlap between two combinatorial maps is tractable in polynomial time. On the other hand, without the connectivity constraint, the problem is \(\mathcal {NP}\)-hard. To obtain the positive results we exploit the properties of a product map.

Keywords

2D semi-open combinatorial maps Overlaps Overlapping patterns Product map 

References

  1. 1.
    Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. A K Peters/CRC Press (2014)Google Scholar
  2. 2.
    Cori, R.: Un code pour les graphes planaires et ses applications. Ph.D. thesis, Université Paris 7 (1973)Google Scholar
  3. 3.
    Damiand, G., de la Higuera, C., Janodet, J.-C., Samuel, É., Solnon, C.: A polynomial algorithm for submap isomorphism. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 102–112. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    de la Higuera, C., Janodet, J.C., Samuel, E., Damiand, G., Solnon, C.: Polynomial algorithms for open plane graph and subgraph isomorphisms. Theor. Comput. Sci. 498, 76–99 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dorn, F.: Planar subgraph isomorphism revisited. In: Proceedings of 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), vol. 5 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 263–274(2010)Google Scholar
  6. 6.
    Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3(3), 1–27 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.C.: On the complexity of submap isomorphism and maximum common submap problems. Pattern Recogn. 48(2), 302–316 (2015)CrossRefzbMATHGoogle Scholar
  8. 8.
    Poudret, M., Arnould, A., Bertrand, Y., Lienhardt, P.: Cartes combinatoires ouvertes. Research Notes 2007–1, Laboratoire SIC E.A. 4103, F-86962 Futuroscope Cedex - France (2007)Google Scholar
  9. 9.
    Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Samuel, E.: Polynomial algorithms for subisomorphism of nD open combinatorial maps. Comput. Vis. Image Underst. 115(7), 996–1010 (2011)CrossRefGoogle Scholar
  10. 10.
    Lichtenstein, D.: Planar formulæ and their uses. SIAM J. Comput. 11(2), 329–343 (1982)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IBISC LabUniversity of EvryEvryFrance
  2. 2.LINA Lab, UMR 6241University of NantesNantesFrance

Personalised recommendations