DIG: Discrete Iso-contour Geodesics for Topological Analysis of Voxelized Objects

  • Gurman Bhalla
  • Partha BhowmickEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


Discretized volumes and surfaces—used today in many areas of science and engineering—are approximated from the real objects in a particular theoretical framework. After a discretization produces a triangle mesh (2-manifold surface), a well-formed voxel set can be prepared from the mesh by voxelization of its constituent triangles based on some digitization principle. Since there exist different topological models of digital plane, choosing the appropriate model to meet the desired requirement appears to be of paramount importance. We introduce here the concept of discrete iso-contour geodesics (DIG) and show how they can be constructed on a voxelized surface with the assurance of certain topological requirements, when the voxelization conforms to the naive model with judicious inclusion of Steiner voxels from the graceful model, as and when needed. We also show some preliminary results on its practical application towards extraction of high-level topological features of 3D objects, which can subsequently be used for various shape-analytic applications.


Digital geometry Discrete topology Iso-contour geodesics Shape analysis Voxelization 


  1. 1.
    Balasubramanian, M., Polimeni, J.R., Schwartz, E.L.: Exact geodesics and shortest paths on polyhedral surfaces. IEEE TPAMI 31, 1006–1016 (2009)CrossRefGoogle Scholar
  2. 2.
    Biswas, R., Bhowmick, P.: On different topological classes of spherical geodesic paths and circles in \({\mathbb{{Z}}}^3\). Theoret. Comput. Sci. 605, 146–163 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discrete Appl. Math. 157, 452–463 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci. 283, 151–170 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity–a review. Discrete Appl. Math. 155, 468–495 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chandru, V., Manohar, S., Prakash, C.E.: Voxel-based modeling for layered manufacturing. IEEE Comput. Graph. App. 15, 42–47 (1995)CrossRefGoogle Scholar
  7. 7.
    Chang, H.H., Lai, Y.C., Yao, C.Y., Hua, K.L., Niu, Y., Liu, F.: Geometry-shader-based real-time voxelization and applications. Vis. Comput. 30, 327–340 (2014)CrossRefGoogle Scholar
  8. 8.
    Coeurjolly, D., Miguet, S., Tougne, L.: 2D and 3D visibility in discrete geometry: an application to discrete geodesic paths. PRL 25, 561–570 (2004)CrossRefGoogle Scholar
  9. 9.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57, 453–461 (1995)CrossRefGoogle Scholar
  10. 10.
    Dachille, F., Kaufman, A.E.: Incremental triangle voxelization. In: Graphics Interface Conference, pp. 205–212 (2000)Google Scholar
  11. 11.
    Desimone, J.M., Ermoshkin, A., Samulski, E.T.: Method and apparatus for three-dimensional fabrication. US Patent 20140361463 (2014)Google Scholar
  12. 12.
    Dionne, O., de Lasa, M.: Geodesic binding for degenerate character geometry using sparse voxelization. IEEE TVCG 20, 1367–1378 (2014)Google Scholar
  13. 13.
    Dong, Z., Chen, W., Bao, H., Zhang, H., Peng, Q.: Real-time voxelization for complex polygonal models. In: PG 2004, pp. 43–50 (2004)Google Scholar
  14. 14.
    Edelsbrunner, H., Harer, J.L.: Computational Topology. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Eisemann, E., Décoret, X.: Single-pass GPU solid voxelization for real-time applications. In: GI 2008, pp. 73–80 (2008)Google Scholar
  16. 16.
    Fang, S., Fang, S., Chen, H., Chen, H.: Hardware accelerated voxelization. Comput. Graph. 24, 433–442 (2000)CrossRefGoogle Scholar
  17. 17.
    Hiller, J., Lipson, H.: Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyping J. 15, 137–149 (2009)CrossRefGoogle Scholar
  18. 18.
    Hiller, J., Lipson, H.: Tunable digital material properties for 3D voxel printers. Rapid Prototyping J. 16, 241–247 (2010)CrossRefGoogle Scholar
  19. 19.
    Hull, C.: Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330 (1986)Google Scholar
  20. 20.
    Jee, H.J., Sachs, E.: A visual simulation technique for 3D printing. Adv. Eng. Softw. 31, 97–106 (2000)CrossRefGoogle Scholar
  21. 21.
    Kamrani, A.K., Nasr, E.A.: Engineering Design and Rapid Prototyping. Springer, Boston (2009)Google Scholar
  22. 22.
    Karabassi, E.A., Papaioannou, G., Theoharis, T.: A fast depth-buffer-based voxelization algorithm. J. Graph. Tools 4(4), 5–10 (1999)CrossRefGoogle Scholar
  23. 23.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  24. 24.
    Liao, D.: GPU-accelerated multi-valued solid voxelization by slice functions in real time. In: VRCAI 2008, pp. 18:1–18:6 (2008)Google Scholar
  25. 25.
    Malgouyres, R.: A discrete radiosity method. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, p. 428. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16, 647–668 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mukhopadhyay, J., Das, P.P., Chattopadhyay, S., Bhowmick, P., Chatterji, B.N.: Digital Geometry in Image Processing. CRC, Boca Ration (2013)zbMATHGoogle Scholar
  28. 28.
    Nanya, T., Yoshihara, H., Maekawa, T.: Reconstruction of complete 3D models by voxel integration. J. Adv. Mech. Des. Syst. Manuf. 7, 362–376 (2013)Google Scholar
  29. 29.
    Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE TVCG 9, 191–205 (2003)Google Scholar
  30. 30.
    Pomerantz, I., Cohen-Sabban, J., Bieber, A., Kamir, J., Katz, M., Nagler, M.: Three dimensional modelling apparatus. US Patent 4961154 (1990)Google Scholar
  31. 31.
    Prakash, C., Manohar, S.: Volume rendering of unstructured grids–a voxelization approach. Comput. Graph. 19, 711–726 (1995)CrossRefGoogle Scholar
  32. 32.
    Steingart, Robert, C., Tzu-Wei, D.: Fabrication of non-homogeneous articles via additive manufacturing using three-dimensional voxel-based models. US Patent 8509933 (2013)Google Scholar
  33. 33.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM TOG 24, 553–560 (2005)CrossRefGoogle Scholar
  34. 34.
    Truong-Hong, L., Laefer, D.F., Hinks, T., Carr, H.: Combining an angle criterion with voxelization and the flying voxel method in reconstructing building models from lidar data. Comput. Aided Civ. Infrastruct. Eng. 28, 112–129 (2013)CrossRefGoogle Scholar
  35. 35.
    Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM TOG 28, 104:1–104:8 (2009)CrossRefGoogle Scholar
  36. 36.
    Xin, S.Q., Ying, X., He, Y.: Constant-time all-pairs geodesic distance query on triangle meshes. In: I3D 2012, pp. 31–38 (2012)Google Scholar
  37. 37.
    Ying, X., Wang, X., He, Y.: Saddle vertex graph (SVG): a novel solution to the discrete geodesic problem. ACM TOG 32, 170:1–170:12 (2013)CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., Morishima, S.: Application friendly voxelization on GPU by geometry splitting. In: Christie, M., Li, T.-Y. (eds.) SG 2014. LNCS, vol. 8698, pp. 112–120. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations