On Some Local Topological Properties of Naive Discrete Sphere

  • Nabhasmita Sen
  • Ranita BiswasEmail author
  • Partha Bhowmick
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


Discretization of sphere in the integer space follows a particular discretization scheme, which, in principle, conforms to some topological model. This eventually gives rise to interesting topological properties of a discrete spherical surface, which need to be investigated for its analytical characterization. This paper presents some novel results on the local topological properties of the naive model of discrete sphere. They follow from the bijection of each quadraginta octant of naive sphere with its projection map called f -map on the corresponding functional plane and from the characterization of certain jumps in the f-map. As an application, we have shown how these properties can be used in designing an efficient reconstruction algorithm for a naive spherical surface from an input voxel set when it is sparse or noisy.


Discrete sphere Functional plane 3D imaging Digital topology Digital geometry 


  1. 1.
    Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)CrossRefGoogle Scholar
  3. 3.
    Biswas, R., Bhowmick, P.: On finding spherical geodesic paths and circles in \(\mathbb{Z}^{3}\). In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 396–409. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Biswas, R., Bhowmick, P.: From prima quadraginta octant to lattice sphere through primitive integer operations. Theor. Comput. Sci. 624, 56–72 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Biswas, R., Bhowmick, P., Brimkov, V.E.: On the connectivity and smoothness of discrete spherical circles. In: Barneva, R.P., et al. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 86–100. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  6. 6.
    Biswas, R., Bhowmick, P., Brimkov, V.E.: On the polyhedra of graceful spheres and circular geodesics. Discrete Appl. Math. (in press). doi: 10.1016/j.dam.2015.11.017 Google Scholar
  7. 7.
    Brimkov, V.E.: Formulas for the number of \((n-2)\)-gaps of binary objects in arbitrary dimension. Discrete Appl. Math. 157(3), 452–463 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brimkov, V.E., Barneva, R.P.: Graceful planes and lines. Theoret. Comput. Sci. 283(1), 151–170 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. Theoret. Comput. Sci. 406(1–2), 24–30 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chamizo, F., Cristobal, E.: The sphere problem and the \(L\)-functions. Acta Math. Hung. 135(1–2), 97–115 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, L., Rong, Y.: Linear time recognition algorithms for topological invariants in 3D. In: ICPR 2008, pp. 1–4 (2008)Google Scholar
  12. 12.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Graph. Models Image Process. 57(6), 453–461 (1995)CrossRefGoogle Scholar
  13. 13.
    Fiorio, C., Jamet, D., Toutant, J.-L.: Discrete circles: an arithmetical approach with non-constant thickness. In: Vision Geometry XIV, SPIE, vol. 6066, p. 60660C (2006)Google Scholar
  14. 14.
    Fiorio, C., Toutant, J.-L.: Arithmetic discrete hyperspheres and separatingness. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 425–436. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Fourey, S., Malgouyres, R.: Intersection number and topology preservation within digital surfaces. Theoret. Comput. Sci. 283(1), 109–150 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kazhdan, M.: Reconstruction of solid models from oriented point sets. In: SGP 2005, Article 73 (2005)Google Scholar
  17. 17.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  18. 18.
    Latecki, L., Conrad, C., Gross, A.: Preserving topology by a digitization process. J. Math. Imaging Vis. 8(2), 131–159 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Comput. Vis. Image Underst. 61(1), 70–83 (1995)CrossRefGoogle Scholar
  20. 20.
    Latecki, L.J., Rosenfeld, A.: Recovering a polygon from noisy data. Comput. Vis. Image Underst. 86(1), 32–51 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Maehara, H.: On a sphere that passes through \(n\) lattice points. Eur. J. Comb. 31(2), 617–621 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Malgouyres, R., Lenoir, A.: Topology preservation within digital surfaces. Graph. Models 62(2), 71–84 (2000)CrossRefGoogle Scholar
  23. 23.
    Montani, C., Scopigno, R.: Graphics Gems, pp. 327–334 (1990)Google Scholar
  24. 24.
    Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE TPAMI 29(1), 126–140 (2007)CrossRefGoogle Scholar
  26. 26.
    Toutant, J.-L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nabhasmita Sen
    • 1
  • Ranita Biswas
    • 1
    Email author
  • Partha Bhowmick
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations