Advertisement

The Coherent Matching Distance in 2D Persistent Homology

  • Andrea CerriEmail author
  • Marc Ethier
  • Patrizio Frosini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)

Abstract

Comparison between multidimensional persistent Betti numbers is often based on the multidimensional matching distance. While this metric is rather simple to define and compute by considering a suitable family of filtering functions associated with lines having a positive slope, it has two main drawbacks. First, it forgets the natural link between the homological properties of filtrations associated with lines that are close to each other. As a consequence, part of the interesting homological information is lost. Second, its intrinsically discontinuous definition makes it difficult to study its properties. In this paper we introduce a new matching distance for 2D persistent Betti numbers, called coherent matching distance and based on matchings that change coherently with the filtrations we take into account. Its definition is not trivial, as it must face the presence of monodromy in multidimensional persistence, i.e. the fact that different paths in the space parameterizing the above filtrations can induce different matchings between the associated persistent diagrams. In our paper we prove that the coherent 2D matching distance is well-defined and stable.

Keywords

Multidimensional matching distance Multidimensional persistent betti numbers Monodromy 

References

  1. 1.
    Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recogn. Lett. 32(14), 1735–1746 (2011)CrossRefGoogle Scholar
  2. 2.
    Biasotti, S., Cerri, A., Frosini, P., Giorgi, D., Landi, C.: Multidimensional size functions for shape comparison. J. Math. Imaging Vis. 32(2), 161–179 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cagliari, F., Di Fabio, B., Ferri, M.: One-dimensional reduction of multidimensional persistent homology. Proc. Am. Math. Soc. 138(8), 3003–3017 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Carlsson, G., Singh, G., Zomorodian, A.J.: Computing multidimensional persistence. J. Comput. Geom. 1(1), 72–100 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discr. Comput. Geom. 42(1), 71–93 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cerri, A., Ethier, M., Frosini, P.: A study of monodromy in the computation of multidimensional persistence. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 192–202. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    d’Amico, M., Frosini, P., Landi, C.: Natural pseudo-distance and optimal matching between reduced size functions. Acta Applicandae Math. 109(2), 527–554 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.J.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Frosini, P., Landi, C.: Size functions and formal series. Appl. Algebra Eng. Commun. Comput. 12(4), 327–349 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lesnick, M.: The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 15(3), 613–650 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IMATI – CNRGenovaItaly
  2. 2.Faculté des SciencesUniversité de Saint-BonifaceWinnipegCanada
  3. 3.Institute of Computer Science and Computational MathematicsJagiellonian UniversityKrakówPoland
  4. 4.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations