Homology Computation During an Incremental Construction Process

  • Pascal LienhardtEmail author
  • Samuel Peltier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


Controlling the construction of geometric objects is important for several Geometric Modeling applications. Homology (groups and generators) may be useful for this control. For such incremental construction processes, it is interesting to incrementally compute the homology, i.e. to deduce the homological information at step s of the construction from the homological information computed at step \(s-1\). We here study the application of effective homology results [13] for such incremental computations.


Homology Simplicial and cellular combinatorial structures Incremental computation 



Many thanks to Francis Sergeraert, Sylvie Alayrangues and Laurent Fuchs.


  1. 1.
    Agoston, M.K.: Algebraic Topology: A First Course. Pure and Applied Mathematics. Marcel Dekker Ed., New York (1976)zbMATHGoogle Scholar
  2. 2.
    Alayrangues, S., Damiand, G., Lienhardt, P., Peltier, S.: A Boundary Operator for Computing the Homology of Cellular Structures. Research Report \(<\)hal-00683031-v2\(>\) (2011)Google Scholar
  3. 3.
    Alayrangues, S., Fuchs, L., Lienhardt, P., Peltier, S.: Incremental computation of the homology of generalized maps - an application of effective homology results. Research Report \(<\)hal-01142760-v2\(>\) (2015)Google Scholar
  4. 4.
    Basak, T.: Combinatorial cell complexes and Poincaré duality. Geom. Dedicata 147(1), 357–387 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boltcheva, D., Merino, S., Léon, J.-C., Hétroy, F.: Constructive Mayer-Vietoris Algorithm: Computing the Homology of Unions of Simplicial Complexes. INRIA Research Report RR-7471 (2010)Google Scholar
  6. 6.
    Boltcheva, D., Canino, D., Aceituno, S.M., Léon, J.-C., De Floriani, L., Hétroy, F.: An iterative algorithm for homology computation on simplical shapes. Comput. Aided Des. 43(11), 1457–1467 (2011)CrossRefGoogle Scholar
  7. 7.
    Damiand, G., Lienhardt, P.: Combinatorial Maps: Efficient Data Structures for Computer Graphics and Image Processing. A K Peters/CRC Press, Boca Raton (2014)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dlotko, P., Kaczynski, T., Mrozek, M.: Computing the cubical cohomology ring. In: 3rd International Workshop on Computational Topology in Image Context, Chipiona, Spain, pp. 137–142 (2010)Google Scholar
  9. 9.
    Dlotko, P., Kaczynski, T., Mrozek, M., Wanner, T.: Coreduction homology algorithm for regular CW-complexes. Discrete Comput. Geom. 46(2), 361–388 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H.: Algorithms in Computational Geometry. Springer, New York (1987)zbMATHGoogle Scholar
  11. 11.
    González-Díaz, R., Jiménez, M.J., Medrano, B., Real, P.: Chain homotopies for object topological representations. Discrete Appl. Math. 157(3), 490–499 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Peltier, S., Fuchs, L., Lienhardt, P.: Simploidals sets - Definitions, operations and comparison with simplicial sets. Discrete App. Math. 157, 542–557 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Rubio, J., Sergeraert, F.: Constructive homological algebra and applications. In: Genova Summer School on Mathematics - Algorithms - Proofs, Genova, Italy (2006)Google Scholar
  14. 14.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Université de Poitiers, Laboratoire XLIM, UMR CNRS 7252PoitiersFrance

Personalised recommendations