Designing a Topological Algorithm for 3D Activity Recognition

  • Maria-Jose JimenezEmail author
  • Belen Medrano
  • David Monaghan
  • Noel E. O’Connor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


Voxel carving is a non-invasive and low-cost technique that is used for the reconstruction of a 3D volume from images captured from a set of cameras placed around the object of interest. In this paper we propose a method to topologically analyze a video sequence of 3D reconstructions representing a tennis player performing different forehand and backhand strokes with the aim of providing an approach that could be useful in other sport activities.


3D video sequence Voxel carving Volume reconstruction Persistent homology Activity recognition 


  1. 1.
    Aggarwal, J.K., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)CrossRefGoogle Scholar
  2. 2.
    Broadhurst, A., Drummond, T., Cipolla, R.: A probabilistic framework for space carving. In: Conference on Computer Vision, vol. 1, p. 388 (2001)Google Scholar
  3. 3.
    Cerri, A., Di Fabio, B., Jablonski, J., Medri, F.: Comparing shapes through multi-scale approximations of the matching distance. Comput. Vis. Image Underst. 121, 43–56 (2014)CrossRefGoogle Scholar
  4. 4.
    Culbertson, W.B., Malzbender, T., Slabaugh, G.G.: Generalized voxel coloring. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, pp. 100–115. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: FOCS 2000, pp. 454–463. IEEE Computer Society (2000)Google Scholar
  6. 6.
    Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-decremental algorithm for computing at-models and persistent homology. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Gutierrez, A., Jimenez, M.J., Monaghan, D., O’Connor, N.E.: Topological evaluation of volume reconstructions by voxel carving. Comput. Vis. Image Underst. 121, 27–35 (2014)CrossRefGoogle Scholar
  8. 8.
    Gutierrez, A., Monaghan, D., Jiménez, M.J., O’Connor, N.E.: Persistent homology for 3D reconstruction evaluation. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 30–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Appl. Math. 147(2–3), 245–263 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  11. 11.
    Iosifidis, A., Tefas, A., Pitas, I.: Multi-view action recognition based on action volumes, fuzzy distances and cluster discriminant analysis. Sig. Process. 93, 1445–1457 (2013)CrossRefGoogle Scholar
  12. 12.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Intern. J. Comput. Vision. 38, 199–218 (2000)CrossRefzbMATHGoogle Scholar
  13. 13.
    Lamar-León, J., García-Reyes, E.B., Gonzalez-Diaz, R.: Human gait identification using persistent homology. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Leon, J.L., Cerri, A., Reyes, E.G., Diaz, R.G.: Gait-based gender classification using persistent homology. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013, Part II. LNCS, vol. 8259, pp. 366–373. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Lamar-Leon, J., Baryolo, R.A., Garcia-Reyes, E., Gonzalez-Diaz, R.: Gait-based carried object detection using persistent homology. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 836–843. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Monaghan, D., Kelly, P., O’Connor, N.E.: Quantifying human reconstruction accuracy for voxel carving in a sporting environment. In: ACM MM, Scottsdale, AZ, 28 November–1 December 2011Google Scholar
  17. 17.
    Monaghan, D., Kelly, P., O’Connor, N.E.: Dynamic voxel carving in tennis based on player localisation using a low cost camera network. In: 2011 IEEE International Conference on Image Processing (ICIP 2011), Brussels, Belgium, 11–14 September 2011Google Scholar
  18. 18.
    Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 519–528 (2006)Google Scholar
  19. 19.
    Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104, 249–257 (2006)CrossRefGoogle Scholar
  20. 20.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria-Jose Jimenez
    • 1
    Email author
  • Belen Medrano
    • 1
  • David Monaghan
    • 2
  • Noel E. O’Connor
    • 2
  1. 1.Applied Math Department, School of Computer EngineeringUniversity of SevilleSevillaSpain
  2. 2.INSIGHT Centre for Data AnalyticsDublin City UniversityDublinIreland

Personalised recommendations