Finding Largest Rectangle Inside a Digital Object

  • Apurba SarkarEmail author
  • Arindam Biswas
  • Mousumi Dutt
  • Arnab Bhattacharya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


We present a combinatorial algorithm which runs in \(O(n \log n)\) time to find largest rectangle (LR) inside a given digital object without holes, n being the number of pixels on the contour of digital object. The object is imposed on background isothetic grid and inner isothetic cover is obtained for a particular grid size, g, which tightly inscribes the digital object. Certain combinatorial rules are applied on the isothetic cover to obtain the largest rectangle. The largest rectangle is useful for shape analysis of digital objects by varying grid size, by rotating the object, etc. Experimental results on different digital objects are also presented.


Digital object Isothetic grid Rectangle Inner isothetic cover Shape analysis 


  1. 1.
    Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: Proceedings of the 3rd Annual Symposium on Computational Geometry, pp. 278–290 (1987)Google Scholar
  2. 2.
    Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: on finding a tight isothetic polygonal shape covering a 2D object. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 930–939. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Biswas, A., Bhowmick, P., Bhattacharya, B.B.: Construction of isothetic covers of a digital object: A combinatorial approach. J. Vis. Comun. Image Represent. 21(4), 295–310 (2010)CrossRefGoogle Scholar
  4. 4.
    Chang, J., Yap, C.: A polynomial solution for the potato-peeling problem. Discrete Comput. Geom. 1, 155–182 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chazelle, B., Drysdale, R.L., Lee, D.T.: Computing the largest empty rectangle. In: STACS-1984, pp. 43–54. Springer, Heidelberg (1984)Google Scholar
  6. 6.
    Chazelle, B., III, R.D., Lee, D.: Computing the largest empty rectangle. SIAM J. Comput. 15, 300–315 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Daniels, K., Milenkovic, V., Roth, D.: Finding the largest area axis-parallel rectangle in a polygon. Comput. Geom.: Theor. Appl. 7, 125–148 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)zbMATHGoogle Scholar
  9. 9.
    McKenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogonal polygon. In: Proceedings of the 23rd Allerton Conference on Communication, Control and Computing, pp. 486–495 (1985)Google Scholar
  10. 10.
    Nandy, S.C., Bhattacharya, B.B., Ray, S.: Efficient algorithms for identifying all maximal isothetic empty rectangles in VLSI layout design. In: Nori, K.V., Veni Madhavan, C.E. (eds.) Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 472, pp. 255–269. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  11. 11.
    Ullman, J.: Chap. 9: Algorithms for VLSI Design Tools. Computational Aspects of VLSI. Computer Science Press, Rockville (1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Apurba Sarkar
    • 1
    Email author
  • Arindam Biswas
    • 2
  • Mousumi Dutt
    • 3
  • Arnab Bhattacharya
    • 4
  1. 1.Department of Computer Science and TechnologyIndian Institute of Engineering Science and TechnologyHowrahIndia
  2. 2.Department of Information TechnologyIndian Institute of Engineering Science and TechnologyHowrahIndia
  3. 3.Department of Computer Science and EngineeringInternational Institute of Information TechnologyNaya RaipurIndia
  4. 4.Department of Computer Science and EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations