Advertisement

On Homotopy Continuation for Speech Restoration

  • Darian M. OnchisEmail author
  • Pedro Real
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)

Abstract

In this paper, a homotopy-based method is employed for the recovery of speech recordings from missing or corrupted samples taken in a noisy environment. The model for the acquisition device is a compressed sensing scenario using Gabor frames. To recover an approximation of the speech file, we used the basis pursuit denoising method with the homotopy continuation algorithm. We tested the proposed method with various speech recordings.

Keywords

Homotopy continuation Speech restoration Basis pursuit \(\ell ^1\) regularization Gabor frames Numerical algorithm 

Notes

Acknowledgments

The first author gratefully acknowledge the support of the Austrian Science Fund (FWF): project number P27516.

References

  1. 1.
    Abel, J.S., Smith III., J.O.: Restoring a clipped signal. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing. IEEE, pp. 1745–1748 (1991)Google Scholar
  2. 2.
    Godsill, S.J., Rayner, P.J.: A Bayesian approach to the restoration of degraded audio signals. IEEE Trans. Speech Audio Process. 3(4), 267–278 (1995)CrossRefGoogle Scholar
  3. 3.
    Adler, A., Emiya, V., Jafari, M., Elad, M., Gribonval, R., Plumbley, M.D.: Audio inpainting. IEEE Trans. Audio Speech Lang. Process. 20(3), 922–932 (2012)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Numerical Tours of Signal Processing. http://www.numerical-tours.com/matlab/optim8homotopy/
  6. 6.
    Malioutov, D.M., Cetin, M., Willsky, A.S.: Homotopy continuation for sparse signal representation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, PA, vol. 5, pp. 733–736, March 2005Google Scholar
  7. 7.
    Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theor. 51(12), 4203–4215 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Herman, M.A., Strohmer, T.: High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 57(6), 2275–2284 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Strohmer, T., Heath, R.: Grassmanian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gill, P.R., Wang, A., Molnar, A.: The in-crowd algorithm for fast basis pursuit denoising. IEEE Trans. Signal Process. 59(10), 4595–4605 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ricaud, B., Stempfel, G., Torresani, B., Wiesmeyr, C., Lachambre, H., Onchis, D.: An optimally concentrated Gabor transform for localized time-frequency components. Adv. Comput. Math. 40(3), 683–702 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Department of Applied Mathematics IUniversity of SevilleSevilleSpain

Personalised recommendations