Topological Analysis of Amplicon Structure in Comparative Genomic Hybridization (CGH) Data: An Application to ERBB2/HER2/NEU Amplified Tumors

  • Sergio Ardanza-Trevijano
  • Georgina Gonzalez
  • Tyler Borrman
  • Juan Luis Garcia
  • Javier ArsuagaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9667)


DNA copy number aberrations (CNAs) play an important role in cancer and can be experimentally detected using microarray comparative genomic hybridization (CGH) techniques. Amplicons, CNAs that extend over large sections of the genome, are difficult to study since they may contain multiple independent and dependent copy number changes. Here, we propose an algorithm to find the CNAs structure within a given amplicon. Our method relies on the observation that co-occurring CNAs can be encoded as 1-dimensional cycles. Applying this method to breast cancer patients known as ERBB2/HER2/NEU amplified we find three regions that can be co-occuring: the first region is in the cytoband 17q12, where the ERBB2 gene is located, the second region expands between 17q21.2 to 17q21.31 and includes the keratin genes, the third one is 17q21.33. We suggest that the first homology group helps uncovering the structure of amplicons.


Copy number aberrations Cancer Computational homology First homology group 



We would like to thank H. Bengtsson and T. Speed for very helpful comments during the development of this methodology. T.B and J.A. were partially supported by NSF grant 1217324 and by NIH-RIMI (Research Infrastructure in Minority Institutions) grant 2P20MD000544-06. SA was partially supported by the Ministerio de Economía y competitividad grant MTM2013-42486-P.


  1. 1.
    Arriola, E., Marchio, C., Tan, D.S., et al.: Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Lab Invest. 88(5), 491–503Google Scholar
  2. 2.
    Arsuaga, J., Baas, N.A., DeWoskin, D., et al.: Topological analysis of gene expression arrays identifies high risk molecular subtypes in breast cancer. Appl. Algebra Eng. Commun. Comput. 23(1), 3–15 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Arsuaga, J., Borrman, T., Cavalcante, R., Gonzalez, G., Park, C.: Identification of copy number aberrations in breast cancer subtypes using persistence topology. Microarrays 4(3), 339–369 (2015)CrossRefGoogle Scholar
  4. 4.
    Barlund, M., Tirkkonen, M., Forozan, F., Tanner, M.M., Kallioniemi, O., Kallioniemi, A.: Increased copy number at 17q22-q24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosom. Cancer. 20(4), 372–376 (1997)CrossRefGoogle Scholar
  5. 5.
    Barrett, M.T., Anderson, K.S., Lenkiewicz, E., et al.: Genomic amplification of 9p24.1 targeting JAK2, PD-L1, and PD-L2 is enriched in high-risk triple negative breast cancer. Oncotarget 6(28), 26483–26493 (2015)CrossRefGoogle Scholar
  6. 6.
    Bengtsson, H., Ray, A., Spellman, P., Speed, T.P.: A single-sample method for normalizing and combining full-resolution copy numbers from multiple platforms, labs and analysis methods. Bioinformatics 25(7), 861–867 (2009)CrossRefGoogle Scholar
  7. 7.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57(1), 289–300 (1995)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bhatlekar, S., Fields, J.Z., Boman, B.M.: HOX genes and their role in the development of human cancers. J. Mol. Med. (Berl) 92(8), 811–823 (2014)CrossRefGoogle Scholar
  9. 9.
    Bilal, E., Vassallo, K., Toppmeyer, D., et al.: Amplified loci on chromosomes 8 and 17 predict early relapse in ER-positive breast cancers. PLoS One 7(6), e38575 (2012)CrossRefGoogle Scholar
  10. 10.
    Cavalcante, R.: Using Homology and networks to locate copy number aberrations associated to recurrence in breast cancer. MA Thesis, San Francisco State University (2012)Google Scholar
  11. 11.
    Chin, K., DeVries, S., Fridlyand, J., Spellman, P.T., Roydasgupta, R., et al.: Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10, 529–541 (2006)CrossRefGoogle Scholar
  12. 12.
    Ching, H.C., Naidu, R., Seong, M.K., Har, Y.C., Taib, N.A.: Integrated analysis of copy number and loss of heterozygosity in primary breast carcinomas using high-density SNP array. Int. J. Oncol. 39(3), 621–633 (2011)Google Scholar
  13. 13.
    Climent, J., Garcia, J.L., Mao, J.H., Arsuaga, J., Perez-Losada, J.: Characterization of breast cancer by array comparative genomic hybridization. Biochem Cell Biol. 85(4), 497–508 (2007)CrossRefGoogle Scholar
  14. 14.
    Desmedt, C., Voet, T., Sotiriou, C., Campbell, P.J.: Next-generation sequencing in breast cancer: first take home messages. Curr Opin. Oncol. 24(6), 597–604 (2012)CrossRefGoogle Scholar
  15. 15.
    DeWoskin, D., Climent, J., Cruz-White, I., Vazquez, M., Park, C., et al.: Applications of computational homology to prediction of treatment response in breast cancer patients. Topology Appl. 157, 157–164 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fridlyand, J., Dimitrov, P.: aCGH: Classes and functions for Array Comparative GenomicHybridization data. R package version 1.34.0Google Scholar
  17. 17.
    Fridlyand, J., Snijders, A.M., Pinkel, D., Albertson, D.G., Jain, A.N.: Hidden Markov models approach to the analysis of array CGH data. J. Multivar. Anal. 90, 132–153 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fridlyand, J., Snijders, A.M., Ylstra, B., Li, H., Olshen, A., et al.: Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96 (2006)CrossRefGoogle Scholar
  19. 19.
    Green, M.R., Monti, S., Rodig, S.J., et al.: Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116(17), 3268–3277Google Scholar
  20. 20.
    Horlings, H.M., Lai, C., Nuyten, D.S.A., et al.: Integration of DNA copy number alterations and prognostic gene expression signatures in breast cancer patients. Clin Cancer Res. 16(2), 651–663 (2010)CrossRefGoogle Scholar
  21. 21.
    Horlings, H.M., Lai, C., Nuyten, D.S.A., et al.: Supplementary Data. Clin. Cancer Res. 16(2), 651–663 (2010b).
  22. 22.
    Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F., Barillot, E.: Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20(18), 3413–3422 (2004)CrossRefGoogle Scholar
  23. 23.
    Jacot, W., Fiche, M., Zaman, K., Wolfer, A., Lamy, P.J.: (2013) The HER2 amplicon in breast cancer: Topoisomerase IIA and beyond. Biochim. Biophys. Acta. 1, 146–157 (1836)Google Scholar
  24. 24.
    Jonsson, G., Staaf, J., Vallon-Christersson, J., Ringner, M., Holm, K., et al.: Genomic subtypes of breast cancer identified by array comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res. 12(3), R42 (2010)CrossRefGoogle Scholar
  25. 25.
    Lai, W.R., Johnson, M.D., Kucherlapati, R., Park, P.J.: Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data. Bioinformatics (2005). doi: 10.1093/bioinformatics/bti611 Google Scholar
  26. 26.
    Lai, C., Horlings, H., van de Vijver, M.J., et al.: SIRAC: supervised identification of regions of aberration in aCGH datasets. BMC Bioinform. 8, 422 (2007)CrossRefGoogle Scholar
  27. 27.
    Latham, C., Zhang, A., Nalbanti, A., et al.: Frequent co-amplification of two different regions on 17q in aneuploid breast carcinomas. Cancer Genet. Cytogenet. 127(1), 16–23 (2001)CrossRefGoogle Scholar
  28. 28.
    Leiserson, M.D., Vandin, F., H-T, Wu, et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 (2015)CrossRefGoogle Scholar
  29. 29.
    Mahmood, S.F., Gruel, N., Chapeaublanc, E., et al.: A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 35(3), 670–682 (2014)CrossRefGoogle Scholar
  30. 30.
    Martin-Castillo, B., Lopez-Bonet, E., Bux, M., et al.: Cytokeratin 5/6 fingerprinting in HER2-positive tumors identifies a poor prognosis and trastuzumab-resistant basal-HER2 subtype of breast cancer. Oncotarget 6(9), 7104–22 (2015)CrossRefGoogle Scholar
  31. 31.
    Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39, 419–441 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Nielsen, K.V., Muller, S., Mller, S., Schonau, A., Balslev, E., Knoop, A.S., Ejlertsen, B.: Aberrations of ERBB2 and TOP2A genes in breast cancer. Mol. Oncol. 4(2), 161–168 (2010)CrossRefGoogle Scholar
  33. 33.
    Olshen, A.B., Venkatraman, E.S., Lucito, R., Wigler, M.: Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4), 557–572 (2004)CrossRefzbMATHGoogle Scholar
  34. 34.
    Perea, J., Harer, J.: Sliding windows and persistence: An application of topological methods to signal analysis. Found. Computat. Math. 15(3), 799–838Google Scholar
  35. 35.
    Perou, C., Borresen-Dale, A.L.: Systems biology and genomics of breast cancer. Cold Spring Harbor Perspect. Biol. 3, a003293 (2011)CrossRefGoogle Scholar
  36. 36.
    Pinkel, D., Albertson, D.G.: Array comparative genomic hybridization and its applications in cancer. Nat. Genet. 37(Suppl), S11–S17 (2005)CrossRefGoogle Scholar
  37. 37.
    Rauta, J., Alarmo, E.L., Kauraniemi, P., et al.: The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours. Breast Cancer Res. Treat. 95(3), 257–263 (2006)CrossRefGoogle Scholar
  38. 38.
    Rebouh: Exploring topological methods to study topological imbalance in breast cancer. San Francisco State University MA thesis (2012)Google Scholar
  39. 39.
    Sinclair, C.S., Rowley, M., Naderi, A., Couch, F.J.: The 17q23 amplicon and breast cancer. Breast Cancer Res. Treat. 78(3), 313–322 (2003)CrossRefGoogle Scholar
  40. 40.
    Tausz, A., Vejdemo-Johansson, M., Adams, H.: JavaPlex: A research software package for persistent (co)homology. In: Hong, H., Yap, C. (eds.) Mathematical Software – ICMS 2014. LNCS, vol. 8592, pp. 129–136. Springer, Heidelberg (2014)Google Scholar
  41. 41.
    Thompson, P.A., Brewster, A.M., Kim-Anh, D.: Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One 6(8), e23543 (2010)CrossRefGoogle Scholar
  42. 42.
    Torresan, C., Oliveira, M.M., Pereira, S.R., et al.: Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis. Cancer Genet. 207(5), 177–187 (2014)CrossRefGoogle Scholar
  43. 43.
    Ulz, P., Heitzer, E., Speicher, M.: Co-occurrence of MYC amplification and TP53 mutations in human cancer. Nat. Genet. 48(2), 104–106 (2016)CrossRefGoogle Scholar
  44. 44.
    Webster, L.R., Provan, P.J., Graham, D.J., et al.: Prohibitin expression is associated with high grade breast cancer but is not a driver of amplification at 17q21.33. Pathology 45(7), 629–636 (2013). doi: 10.1097/PAT.0000000000000004 CrossRefGoogle Scholar
  45. 45.
    Willenbrock, H., Fridlyand, J.: A comparison study: applying segmentation to array CGH data for downstream analyses. Bioinformatics 21(22), 4084–4091 (2005)CrossRefGoogle Scholar
  46. 46.
    Wilkerson, P.M., Reis-Filho, J.S.: The 11q13-q14 amplicon: clinicopathological correlations and potential drivers. Genes Chromosom. Cancer 52(4), 333–355 (2013)CrossRefGoogle Scholar
  47. 47.
    Zhou, X., Rao, N.P., Cole, S.W., Mok, S.C., Chen, Z., Wong, D.T.: Progress in concurrent analysis of loss of heterozygosity and comparative genomic hybridization utilizing high density single nucleotide polymorphism arrays. Cancer Genet. Cytogenet 159(1), 53–57 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sergio Ardanza-Trevijano
    • 1
  • Georgina Gonzalez
    • 2
  • Tyler Borrman
    • 3
  • Juan Luis Garcia
    • 4
  • Javier Arsuaga
    • 2
    • 5
    Email author
  1. 1.Department of Physics and Applied MathematicsUniversity of NavarraPamplonaSpain
  2. 2.Department of Molecular and Cellular BiologyUniversity of California DavisDavisUSA
  3. 3.Medical SchoolUniversity of MassachusettsWorcesterUSA
  4. 4.Centro de Investigación del CancerUniversidad de SalamancaSalamancaSpain
  5. 5.Department of MathematicsUniversity of California DavisDavisUSA

Personalised recommendations