Skip to main content

Molecular Mechanisms of Disease: The RET Proto-oncogene

  • Chapter
  • First Online:
Medullary Thyroid Cancer

Abstract

Multiple endocrine neoplasia type 2 (MEN2 ) is a rare disorder with distinct clinical features that were key to the elucidation of its underlying molecular cause. Oncogenic transformation of the thyroid C-cell in MEN2 is highly penetrant and progresses through a hyperplastic process prior to malignancy. Tumor burden is assessed by the measurement of serum calcitonin levels, and thyroidectomy is the primary treatment. Clearly defined kindreds with MEN2 were used to map the causative gene to chromosome 10 and to identify mutations in the RET proto-oncogene. The discovery that MEN2 is caused by activating mutations of the RET gene has served to guide an evolving strategy of prophylactic thyroidectomy for the treatment of hereditary MTC and therapeutic strategies for sporadic MTC, where RET activation in the most commonly observed genetic defect. Thyroid C cells are known to express RET at high levels relative to most other cell types; therefore, aberrant activation of the receptor is thought to preferentially sensitize these cells to transformation. A role of RET in medullary thyroid carcinoma has also served to highlight the importance of the MAPK and PI3K signaling pathways in its initiation and progression. Newly published studies demonstrate equally important functions of RET to prevent apoptosis, perhaps allowing the survival of tumor-initiating cell populations. A growing understanding of how RET interacts with growth and death pathways in normal C-cell function, during oncogenic transformation, and finally in tumor progression has helped drive the development of molecular-targeted therapies for the treatment of metastatic medullary thyroid carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet. 1993;2(7):851–6.

    Google Scholar 

  2. Hofstra RM, Landsvater RM, Ceccherini I, Stulp RP, Stelwagen T, Luo Y, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367(6461):375–6.

    Google Scholar 

  3. Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363(6428):458–60.

    Google Scholar 

  4. Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British journal of cancer. 2004;91(2):355–8, http://www.sanger.ac.uk/cosmic.

    Google Scholar 

  5. Ji JH, Oh YL, Hong M, Yun JW, Lee HW, Kim D, et al. Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 2015;11(8):e1005467.

    Google Scholar 

  6. Moura MM, Cavaco BM, Leite V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr Relat Cancer. 2015;22(5):R235–52.

    Google Scholar 

  7. Cote GJ, Grubbs EG, Hofmann MC. Thyroid C-cell biology and oncogenic transformation. Recent Results Cancer Res. 2015;204:1–39.

    Google Scholar 

  8. Pasini B, Hofstra RM, Yin L, Bocciardi R, Santamaria G, Grootscholten PM, et al. The physical map of the human RET proto-oncogene. Oncogene. 1995;11(9):1737–43.

    Google Scholar 

  9. Liu X, Vega QC, Decker RA, Pandey A, Worby CA, Dixon JE. Oncogenic RET receptors display different autophosphorylation sites and substrate binding specificities. J Biol Chem. 1996;271(10):5309–12.

    Google Scholar 

  10. Kawamoto Y, Takeda K, Okuno Y, Yamakawa Y, Ito Y, Taguchi R, et al. Identification of RET autophosphorylation sites by mass spectrometry. J Biol Chem. 2004;279(14):14213–24.

    Google Scholar 

  11. Knowles PP, Murray-Rust J, Kjaer S, Scott RP, Hanrahan S, Santoro M, et al. Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem. 2006;281(44):33577–87.

    Google Scholar 

  12. Asai N, Murakami H, Iwashita T, Takahashi M. A mutation at tyrosine 1062 in MEN2A-Ret and MEN2B-Ret impairs their transforming activity and association with shc adaptor proteins. J Biol Chem. 1996;271(30):17644–9.

    Google Scholar 

  13. Borrello MG, Alberti L, Arighi E, Bongarzone I, Battistini C, Bardelli A, et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase Cgamma. Mol Cell Biol. 1996;16(5):2151–63.

    Google Scholar 

  14. Encinas M, Crowder RJ, Milbrandt J, Johnson EM Jr. Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J Biol Chem. 2004;279(18):18262–9.

    Google Scholar 

  15. Mulligan LM. RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer. 2014;14(3):173–86.

    Google Scholar 

  16. Plaza-Menacho I, Mologni L, McDonald NQ. Mechanisms of RET signaling in cancer: current and future implications for targeted therapy. Cell Signal. 2014;26(8):1743–52.

    Google Scholar 

  17. Braydich-Stolle L, Kostereva N, Dym M, Hofmann MC. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol. 2007;304(1):34–45.

    Google Scholar 

  18. Lucas BE, Fields C, Joshi N, Hofmann MC. Mono-(2-ethylhexyl)-phthalate (MEHP) affects ERK-dependent GDNF signalling in mouse stem-progenitor spermatogonia. Toxicology. 2012;299(1):10–9.

    Google Scholar 

  19. He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 2008;26(1):266–78.

    Google Scholar 

  20. Lee J, Kanatsu-Shinohara M, Morimoto H, Kazuki Y, Takashima S, Oshimura M, et al. Genetic reconstruction of mouse spermatogonial stem cell self-renewal in vitro by Ras-cyclin D2 activation. Cell Stem Cell. 2009;5(1):76–86.

    Google Scholar 

  21. Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol. 2014;29(4):597–608.

    Google Scholar 

  22. Bates CM, Kharzai S, Erwin T, Rossant J, Parada LF. Role of N-myc in the developing mouse kidney. Dev Biol. 2000;222(2):317–25.

    Google Scholar 

  23. Kulkarni MV, Franklin DS. N-Myc is a downstream target of RET signaling and is required for transcriptional regulation of p18(Ink4c) by the transforming mutant RET(C634R). Mol Oncol. 2011;5(1):24–35.

    Google Scholar 

  24. DeNardo BD, Holloway MP, Ji Q, Nguyen KT, Cheng Y, Valentine MB, et al. Quantitative phosphoproteomic analysis identifies activation of the RET and IGF-1R/IR signaling pathways in neuroblastoma. PLoS One. 2013;8(12):e82513.

    Google Scholar 

  25. Aron L, Klein R. Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci. 2011;34(2):88–100.

    Google Scholar 

  26. d’Anglemont de Tassigny X, Pascual A, Lopez-Barneo J. GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson’s disease. Front Neuroanat. 2015;9:10.

    Google Scholar 

  27. Paratcha G, Ledda F. GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci. 2008;31(8):384–91.

    Google Scholar 

  28. Reginensi A, Hoshi M, Boualia SK, Bouchard M, Jain S, McNeill H. Yap and Taz are required for Ret-dependent urinary tract morphogenesis. Development. 2015;142(15):2696–703.

    Google Scholar 

  29. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009;41(12):1295–302.

    Google Scholar 

  30. Chen C, Ouyang W, Grigura V, Zhou Q, Carnes K, Lim H, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature. 2005;436(7053):1030–4.

    Google Scholar 

  31. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA. 2006;103(25):9524–9.

    Google Scholar 

  32. Wu X, Goodyear SM, Tobias JW, Avarbock MR, Brinster RL. Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod. 2011;85(6):1114–23.

    Google Scholar 

  33. Lindahl M, Poteryaev D, Yu L, Arumae U, Timmusk T, Bongarzone I, et al. Human glial cell line-derived neurotrophic factor receptor alpha 4 is the receptor for persephin and is predominantly expressed in normal and malignant thyroid medullary cells. J Biol Chem. 2001;276(12):9344–51.

    Google Scholar 

  34. Offterdinger M, Schofer C, Weipoltshammer K, Grunt TW. c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol. 2002;157(6):929–39.

    Google Scholar 

  35. Mosesson Y, Mills GB, Yarden Y. Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer. 2008;8(11):835–50.

    Google Scholar 

  36. Massie C, Mills IG. The developing role of receptors and adaptors. Nat Rev Cancer. 2006;6(5):403–9.

    Google Scholar 

  37. Demory ML, Boerner JL, Davidson R, Faust W, Miyake T, Lee I, et al. Epidermal growth factor receptor translocation to the mitochondria: regulation and effect. J Biol Chem. 2009;284(52):36592–604.

    Google Scholar 

  38. Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J. 2015;.

    Google Scholar 

  39. Huo L, Hsu JL, Hung MC. Receptor tyrosine kinases in the nucleus: nuclear functions and therapeutic implications in cancers. In: Kumar R, editor. Nuclear signaling pathways and targeting transcription in cancer. Springer, New York: Cancer Drug Discovery and Development; 2014. p. 189–229.

    Google Scholar 

  40. Song S, Rosen KM, Corfas G. Biological function of nuclear receptor tyrosine kinase action. Cold Spring Harbor Perspect Biology. 2013;5(7).

    Google Scholar 

  41. Wang YN, Hsu JL, Hung MC. Nuclear functions and trafficking of receptor tyrosine kinases. In: Yarden Y, Tarcic G (eds). Vesicle trafficking in cancer. Springer, New York; 2013. p. 159–76.

    Google Scholar 

  42. Lo HW, Xia W, Wei Y, Ali-Seyed M, Huang SF, Hung MC. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res. 2005;65(1):338–48.

    Google Scholar 

  43. Brand TM, Iida M, Luthar N, Starr MM, Huppert EJ, Wheeler DL. Nuclear EGFR as a molecular target in cancer. Radiother Oncol. 2013;108(3):370–7.

    Google Scholar 

  44. Bagheri-Yarmand R, Sinha KM, Gururaj AE, Ahmed Z, Rizvi YQ, Huang SC, et al. A novel dual kinase function of the RET proto-oncogene negatively regulates activating transcription factor 4-mediated apoptosis. J Biol Chem. 2015;290(18):11749–61.

    Google Scholar 

  45. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.

    Google Scholar 

  46. Luesma MJ, Cantarero I, Alvarez-Dotu JM, Santander S, Junquera C. New insights into c-Ret signalling pathway in the enteric nervous system and its relationship with ALS. BioMed Res Int. 2014;2014:328348.

    Google Scholar 

  47. Ryu H, Jeon GS, Cashman NR, Kowall NW, Lee J. Differential expression of c-Ret in motor neurons versus non-neuronal cells is linked to the pathogenesis of ALS Laboratory investigation. J Tech Methods Pathol. 2011;91(3):342–52.

    Google Scholar 

  48. Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev. 2005;16(4–5):441–67

    Google Scholar 

  49. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol. 2013;10(1):43–57.

    Google Scholar 

  50. Amiel J, Salomon R, Attie T, Pelet A, Trang H, Mokhtari M, et al. Mutations of the RET-GDNF signaling pathway in ondine’s curse. Am J Hum Genet. 1998;62(3):715–7.

    Google Scholar 

  51. Lindahl M, Timmusk T, Rossi J, Saarma M, Airaksinen MS. Expression and alternative splicing of mouse Gfra4 suggest roles in endocrine cell development. Molecular Cell Neurosci. 2000;15(6):522–33.

    Google Scholar 

  52. Carniti C, Belluco S, Riccardi E, Cranston AN, Mondellini P, Ponder BA, et al. The Ret(C620R) mutation affects renal and enteric development in a mouse model of hirschsprung’s disease. Am J Pathol. 2006;168(4):1262–75.

    Google Scholar 

  53. Yin L, Puliti A, Bonora E, Evangelisti C, Conti V, Tong WM, et al. C620R mutation of the murine ret proto-oncogene: loss of function effect in homozygotes and possible gain of function effect in heterozygotes. Int J Cancer J Int du Cancer. 2007;121(2):292–300.

    Google Scholar 

  54. Lindfors PH, Lindahl M, Rossi J, Saarma M, Airaksinen MS. Ablation of persephin receptor glial cell line-derived neurotrophic factor family receptor alpha4 impairs thyroid calcitonin production in young mice. Endocrinology. 2006;147(5):2237–44.

    Google Scholar 

  55. Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, et al. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS ONE. 2009;4(3):e4815.

    Google Scholar 

  56. Canibano C, Rodriguez NL, Saez C, Tovar S, Garcia-Lavandeira M, Borrello MG, et al. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth. The EMBO J. 2007;26(8):2015–28.

    Google Scholar 

  57. Brantley MA Jr, Jain S, Barr EE, Johnson EM Jr, Milbrandt J. Neurturin-mediated ret activation is required for retinal function. J Neurosci. 2008;28(16):4123–35.

    Google Scholar 

  58. Fonseca-Pereira D, Arroz-Madeira S, Rodrigues-Campos M, Barbosa IA, Domingues RG, Bento T, et al. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature. 2014;514(7520):98–101.

    Google Scholar 

  59. Meng X, Lindahl M, Hyvonen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.

    Google Scholar 

  60. Hofmann MC. Gdnf signaling pathways within the mammalian spermatogonial stem cell niche. Mol Cell Endocrinol. 2008;288(1–2):95–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol. 2005;279(1):114–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, et al. Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol. 2007;5(3):e39.

    Google Scholar 

  63. Bunone G, Uggeri M, Mondellini P, Pierotti MA, Bongarzone I. RET receptor expression in thyroid follicular epithelial cell-derived tumors. Cancer Res. 2000;60(11):2845–9.

    Google Scholar 

  64. Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology. 2012;153(5):2514–25.

    Google Scholar 

  65. Eng C, Thomas GA, Neuberg DS, Mulligan LM, Healey CS, Houghton C, et al. Mutation of the RET proto-oncogene is correlated with RET immunostaining in subpopulations of cells in sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab. 1998;83(12):4310–3.

    Google Scholar 

  66. Powers JF, Brachold JM, Tischler AS. Ret protein expression in adrenal medullary hyperplasia and pheochromocytoma. Endocr Pathol. 2003;14(4):351–61.

    Google Scholar 

  67. Williams GH, Rooney S, Carss A, Cummins G, Thomas GA, Williams ED. Analysis of the RET proto-oncogene in sporadic parathyroid adenomas. J Pathol. 1996;180(2):138–41.

    Google Scholar 

  68. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Google Scholar 

  69. Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, et al. A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res. 2007;67(24):11732–41.

    Google Scholar 

  70. Gainor JF, Shaw AT. The new kid on the block: RET in lung cancer. Cancer Discov. 2013;3(6):604–6.

    Google Scholar 

  71. Ito Y, Okada Y, Sato M, Sawai H, Funahashi H, Murase T, et al. Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery. 2005;138(4):788–94.

    Google Scholar 

  72. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18(3):375–7.

    Google Scholar 

  73. Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med. 2012;18(3):382–4.

    Google Scholar 

  74. Morandi A, Martin LA, Gao Q, Pancholi S, Mackay A, Robertson D, et al. GDNF-RET signaling in ER-positive breast cancers is a key determinant of response and resistance to aromatase inhibitors. Cancer Res. 2013;73(12):3783–95.

    Google Scholar 

  75. Plaza-Menacho I, Morandi A, Robertson D, Pancholi S, Drury S, Dowsett M, et al. Targeting the receptor tyrosine kinase RET sensitizes breast cancer cells to tamoxifen treatment and reveals a role for RET in endocrine resistance. Oncogene. 2010;29(33):4648–57.

    Google Scholar 

  76. Sawai H, Okada Y, Kazanjian K, Kim J, Hasan S, Hines OJ, et al. The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res. 2005;65(24):11536–44.

    Google Scholar 

  77. Margraf RL, Crockett DK, Krautscheid PM, Seamons R, Calderon FR, Wittwer CT, et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat. 2009;30(4):548–56.

    Google Scholar 

  78. Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res. 2013;752(1):36–44.

    Google Scholar 

  79. Frank-Raue K, Rondot S, Raue F. Molecular genetics and phenomics of RET mutations: Impact on prognosis of MTC. Mol Cell Endocrinol. 2010;322(1–2):2–7.

    Google Scholar 

  80. Grubbs EG, Gagel RF. My, How Things Have Changed in Multiple Endocrine Neoplasia Type 2A! J Clin Endocrinol Metab. 2015;100(7):2532–5.

    Google Scholar 

  81. Machens A, Dralle H. Therapeutic Effectiveness of screening for multiple endocrine neoplasia type 2A. J Clin Endocrinol Metab. 2015;100(7):2539–45.

    Google Scholar 

  82. Yip L, Cote GJ, Shapiro SE, Ayers GD, Herzog CE, Sellin RV et al. Multiple endocrine neoplasia type 2: evaluation of the genotype-phenotype relationship. Arch Surg. 2003;138(4):409–16; (discussion 16).

    Google Scholar 

  83. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995;267(5196):381–3.

    Google Scholar 

  84. Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol. 2013;5(12):a009233.

    Google Scholar 

  85. Asai N, Iwashita T, Matsuyama M, Takahashi M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol. 1995;15(3):1613–9.

    Google Scholar 

  86. Borrello MG, Smith DP, Pasini B, Bongarzone I, Greco A, Lorenzo MJ, et al. RET activation by germline MEN2A and MEN2B mutations. Oncogene. 1995;11(11):2419–27.

    Google Scholar 

  87. Salvatore D, Melillo RM, Monaco C, Visconti R, Fenzi G, Vecchio G, et al. Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res. 2001;61(4):1426–31.

    Google Scholar 

  88. Songyang Z, Carraway KL 3rd, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature. 1995;373(6514):536–9.

    Google Scholar 

  89. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98(2):E364–9.

    Google Scholar 

  90. Cai J, Li L, Ye L, Jiang X, Shen L, Gao Z, et al. Exome sequencing reveals mutant genes with low penetrance involved in MEN2A-associated tumorigenesis. Endocr Relat Cancer. 2015;22(1):23–33.

    Google Scholar 

  91. Acton DS, Velthuyzen D, Lips CJ, Hoppener JW. Multiple endocrine neoplasia type 2B mutation in human RET oncogene induces medullary thyroid carcinoma in transgenic mice. Oncogene. 2000;19(27):3121–5.

    Google Scholar 

  92. Michiels FM, Chappuis S, Caillou B, Pasini A, Talbot M, Monier R, et al. Development of medullary thyroid carcinoma in transgenic mice expressing the RET protooncogene altered by a multiple endocrine neoplasia type 2A mutation. Proc Natl Acad Sci USA. 1997;94(7):3330–5.

    Google Scholar 

  93. Reynolds L, Jones K, Winton DJ, Cranston A, Houghton C, Howard L, et al. C-cell and thyroid epithelial tumours and altered follicular development in transgenic mice expressing the long isoform of MEN 2A RET. Oncogene. 2001;20(30):3986–94.

    Google Scholar 

  94. Kawai K, Iwashita T, Murakami H, Hiraiwa N, Yoshiki A, Kusakabe M, et al. Tissue-specific carcinogenesis in transgenic mice expressing the RET proto-oncogene with a multiple endocrine neoplasia type 2A mutation. Cancer Res. 2000;60(18):5254–60.

    Google Scholar 

  95. Smith-Hicks CL, Sizer KC, Powers JF, Tischler AS, Costantini F. C-cell hyperplasia, pheochromocytoma and sympathoadrenal malformation in a mouse model of multiple endocrine neoplasia type 2B. EMBO J. 2000;19(4):612–22.

    Google Scholar 

  96. Kirschner LS, Qamri Z, Kari S, Ashtekar A. Mouse models of thyroid cancer: A 2015 update. Mol Cell Endocrinol. 2015.

    Google Scholar 

  97. Ponder BA. The phenotypes associated with ret mutations in the multiple endocrine neoplasia type 2 syndrome. Cancer research. 1999;59(7 Suppl):1736s-41s; discussion 42s.

    Google Scholar 

  98. Cranston AN, Ponder BA. Modulation of medullary thyroid carcinoma penetrance suggests the presence of modifier genes in a RET transgenic mouse model. Cancer Res. 2003;63(16):4777–80.

    Google Scholar 

  99. van Veelen W, van Gasteren CJ, Acton DS, Franklin DS, Berger R, Lips CJ, et al. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. Cancer Res. 2008;68(5):1329–37.

    Google Scholar 

  100. Flicker K, Ulz P, Hoger H, Zeitlhofer P, Haas OA, Behmel A, et al. High-resolution analysis of alterations in medullary thyroid carcinoma genomes. Int J Cancer J Int du Cancer. 2012;131(2):E66–73.

    Google Scholar 

  101. Ye L, Santarpia L, Cote GJ, El-Naggar AK, Gagel RF. High resolution array-comparative genomic hybridization profiling reveals deoxyribonucleic acid copy number alterations associated with medullary thyroid carcinoma. J Clin Endocrinol Metab. 2008;93(11):4367–72.

    Google Scholar 

  102. Coxon AB, Ward JM, Geradts J, Otterson GA, Zajac-Kaye M, Kaye FJ. RET cooperates with RB/p53 inactivation in a somatic multi-step model for murine thyroid cancer. Oncogene. 1998;17(12):1625–8.

    Google Scholar 

  103. Parthasarathy R, Cote GJ, Gagel RF. Hammerhead ribozyme-mediated inactivation of mutant RET in medullary thyroid carcinoma. Cancer Res. 1999;59(16):3911–4.

    Google Scholar 

  104. Kikumori T, Cote GJ, Gagel RF. A ribozyme directed against RET proto-oncogene inhibits medullary thyroid carcinoma cell growth. The 92th Annual Meeting of the American Association of Cancer Research. New Orleans, LA, 2001.

    Google Scholar 

  105. Drosten M, Frilling A, Stiewe T, Putzer BM. A new therapeutic approach in medullary thyroid cancer treatment: inhibition of oncogenic RET signaling by adenoviral vector-mediated expression of a dominant-negative RET mutant. Surgery. 2002;132(6):991–7; (discussion 7).

    Google Scholar 

  106. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.

    Google Scholar 

  107. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96(3):925–32.

    Google Scholar 

  108. Schwetz BA. From the Food and drug administration. JAMA. 2001;286(1):35.

    Google Scholar 

  109. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1(7):493–502.

    Google Scholar 

  110. Cohen MS, Hussain HB, Moley JF. Inhibition of medullary thyroid carcinoma cell proliferation and RET phosphorylation by tyrosine kinase inhibitors. Surgery. 2002;132(6):960–6; (discussion 6–7).

    Google Scholar 

  111. Kikumori T, Hayashi H, Cote GJ, Scappini B, Beran M, Gagel RF. STI 571 (gleevec) inhibits growth of human medullary thyroid carcinoma cell line with an activating RET proto-oncogene mutation. The 8th International Workshop on Multiple Endocrine Neoplasia. Grand Rapids, MI, 2002.

    Google Scholar 

  112. Skinner MA, Safford SD, Freemerman AJ. RET tyrosine kinase and medullary thyroid cells are unaffected by clinical doses of STI571. Anticancer Res. 2003;23(5A):3601–6.

    Google Scholar 

  113. Carlomagno F, Vitagliano D, Guida T, Ciardiello F, Tortora G, Vecchio G, et al. ZD6474, an orally available inhibitor of KDR tyrosine kinase activity, efficiently blocks oncogenic RET kinases. Cancer Res. 2002;62(24):7284–90.

    Google Scholar 

  114. Strock CJ, Park JI, Rosen M, Dionne C, Ruggeri B, Jones-Bolin S, et al. CEP-701 and CEP-751 inhibit constitutively activated RET tyrosine kinase activity and block medullary thyroid carcinoma cell growth. Cancer Res. 2003;63(17):5559–63.

    Google Scholar 

  115. Vitagliano D, De Falco V, Tamburrino A, Coluzzi S, Troncone G, Chiappetta G, et al. The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells. Endocr Relat Cancer. 2011;18(1):1–11.

    Google Scholar 

  116. Verbeek HH, Alves MM, de Groot JW, Osinga J, Plukker JT, Links TP, et al. The effects of four different tyrosine kinase inhibitors on medullary and papillary thyroid cancer cells. J Clin Endocrinol Metab. 2011;96(6):E991–5.

    Google Scholar 

  117. Drosten M, Stiewe T, Putzer BM. Antitumor capacity of a dominant-negative RET proto-oncogene mutant in a medullary thyroid carcinoma model. Hum Gene Ther. 2003;14(10):971–82.

    Google Scholar 

  118. Drosten M, Hilken G, Bockmann M, Rodicker F, Mise N, Cranston AN, et al. Role of MEN2A-derived RET in maintenance and proliferation of medullary thyroid carcinoma. J Natl Cancer Inst. 2004;96(16):1231–9.

    Google Scholar 

  119. Vidal M, Wells S, Ryan A, Cagan R. ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma. Cancer Res. 2005;65(9):3538–41.

    Google Scholar 

  120. Johanson V, Ahlman H, Bernhardt P, Jansson S, Kolby L, Persson F, et al. A transplantable human medullary thyroid carcinoma as a model for RET tyrosine kinase-driven tumorigenesis. Endocr Relat Cancer. 2007;14(2):433–44.

    Google Scholar 

  121. Wells SA Jr, Gosnell JE, Gagel RF, Moley J, Pfister D, Sosa JA, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol: Official J Am Soc Clin Oncol. 2010;28(5):767–72.

    Google Scholar 

  122. Bentzien F, Zuzow M, Heald N, Gibson A, Shi Y, Goon L, et al. In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid: Official J Am Thyroid Assoc. 2013;23(12):1569–77.

    Google Scholar 

  123. Basser R, Hurwitz H, Barge A, Davis I, DeBoer R, Holden SN, et al. Phase I pharmacokinetic and biological study of the angiogenesis inhibitor, ZD6474, in patients with solid tumors. Proc Am Soc Clin Oncol. 2001;37:21.

    Google Scholar 

  124. Efficacy and Tolerability of ZD6474 in Patients With Thyroid Cancer. https://clinicaltrials.gov/ct2/show/results/NCT00098345?term=6474&rcv_e=11%2F15%2F2005&rank=2. Accessed 9 Jan 2015.

  125. Wells SA, You Y, Lakhani V, Bauer M, Langmuir P, Headley D et al. The use of ZACTIMA (ZD6474) in the treatment of patients with hereditary medullary thyroid carcinoma. AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics 2005; Philadelphia: Abstract B248.

    Google Scholar 

  126. Cabanillas ME, Hu MI, Jimenez C, Grubbs EG, Cote GJ. Treating medullary thyroid cancer in the age of targeted therapy. Int J Endocr Oncol. 2014;1(2):203–16.

    Google Scholar 

  127. Ye L, Santarpia L, Gagel RF. The evolving field of tyrosine kinase inhibitors in the treatment of endocrine tumors. Endocr Rev. 2010;31(4):578–99.

    Google Scholar 

  128. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol: Official J Am Soc Clin. Oncol. 2011;29(19):2660–6.

    Google Scholar 

  129. Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol: Official J Am Soc Clin Oncol. 2013;31(29):3639–46.

    Google Scholar 

  130. Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol: Official J Am Soc Clin Oncol. 2012;30(2):134–41.

    Google Scholar 

  131. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al. Mutations of the RET proto-oncogene in hirschsprung’s disease. Nature. 1994;367(6461):378–80.

    Google Scholar 

  132. Romeo G, Ronchetto P, Luo Y, Barone V, Seri M, Ceccherini I, et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in hirschsprung’s disease. Nature. 1994;367(6461):377–8.

    Google Scholar 

  133. Drosten M, Putzer BM. Mechanisms of Disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy. Nat Clin Pract Oncol. 2006;3(10):564–74.

    Google Scholar 

Download references

Acknowledgments

G.J. Cote, M.C. Hofmann, and R. Bagheri-Yarmand are supported by NIH/NCI grant P50 CA168505. M.C. Hofmann additionally supported by NIH/NICHD R01 HD081244.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert J. Cote .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cote, G.J., Bagheri-Yarmand, R., Hofmann, MC., Gagel, R.F. (2016). Molecular Mechanisms of Disease: The RET Proto-oncogene. In: Wang, T., Evans, D. (eds) Medullary Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-39412-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39412-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39410-7

  • Online ISBN: 978-3-319-39412-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics