Skip to main content

History and Epidemiology

  • Chapter
  • First Online:
Medullary Thyroid Cancer

Abstract

Medullary thyroid carcinoma (MTC) was recognized as a distinct pathologic type of thyroid cancer relatively recently. A sequence of important discoveries led to the description of MTC, including the identification of the separate population of thyroid parafollicular or C-cells which derive embryologically from the neural crest, and the discovery that this cell population was responsible for the production of the peptide hormone calcitonin. The unique features of MTC include its familial associations, intermediate level of biologic aggressiveness, and its lack of susceptibility to radioiodine making complete surgical removal of all cancer and lymphatic metastases the primary treatment goal. Germline mutations in the RET protooncogene are responsible for the endocrine tumors that develop in association with the multiple endocrine neoplasia type 2 (MEN2) syndromes, and somatic mutations in the same gene underlie a significant proportion of sporadic tumors. Importantly, direct genetic testing allows for presymptomatic identification of patients at high risk for developing thyroid cancer during their lifetime. Early thyroidectomy may be performed in patients who are found to have inherited a MEN2 disease-associated mutation, with the goal of removing the end organ at risk before invasive malignancy develops. Prophylactic thyroidectomy for patients with MEN2 was one of the first, and is perhaps still one of the best, examples of a surgical intervention based on genetic testing that is intended to completely prevent subsequent cancer development in patients with an inherited cancer susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baber EC. Contributions to the minute anatomy of the thyroid gland of the dog. Proc R Soc Lond. 1876;24:240–1.

    Article  Google Scholar 

  2. Nonidez JF. The origin of the “parafollicullar cell”, a second epithelial component of the thyroid gland of the dog. Am J Anat. 1932;49(3):479–505.

    Article  Google Scholar 

  3. Nonidez JF. Further observations on the parafollicular cells of the mammalian thyroid. Anat Rec. 1932;53:339–47.

    Article  Google Scholar 

  4. Nonidez JF. The “parenchymatous cells” of Baber, the “protoplasmareiche Zellen” of Hurthle and the “parafollicular cells” of the mammalian thyroid. Anat Rec. 1935;56:131–41.

    Article  Google Scholar 

  5. Roediger WE. The oxyphil and C cells of the human thyroid gland. A cytochemical and histopathologic review. Cancer. 1975;36(5):1758–70.

    Article  CAS  PubMed  Google Scholar 

  6. Hazard JB. The C cells (parafollicular cells) of the thyroid gland and medullary thyroid carcinoma. A review. Am J Pathol. 1977;88(1):213–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hürthle K. Beiträge zur kenntnis des sekretionsvorganges in der schilddrüse. Archiv Gesamte Physiologie. 1894;56:1.

    Article  Google Scholar 

  8. Bensley RR. The thyroid gland of the opossum. Anat Rec. 1914;8:431.

    Article  Google Scholar 

  9. Tagaki K. A cytologic study on the dog’s thyroid gland. Folia Anat Jpn. 1922-3;1:69.

    Google Scholar 

  10. Baillif RN. Cytologic changes in the rat thyroid following exposure to heat and cold and their relationship to the physiology of secretion. Am J Anat. 1937;61:1–17.

    Article  Google Scholar 

  11. Sunder-Plassman P. Ueber neurohormonale Zellen des Vagussystems in der Schilddrüse. Dtsch Zeit Chir. 1939;252:210–23.

    Article  Google Scholar 

  12. Altman HW. Die Parafollikulare Zelle der Schildruse and ihre Beziehungen zu der gelben Zelle des Darmes. Beitr Pathol Anat. 1940;104:420–54.

    Google Scholar 

  13. Foster GV, Macintyre I, Pearse AG. Calcitonin production and the mitochondrion-rich cells of the dog thyroid. Nature. 1964;203:1029–30.

    Article  CAS  PubMed  Google Scholar 

  14. Seecof DP. Studies on mitochondria: II. The occurrence of mitochondria-rich and mitochondria-poor cells in the thyroid gland of man and animals. Am J Pathol. 1927;3(4):365–84.

    Google Scholar 

  15. Kroon DB. The macrothyrocyte as a functional stage of the thyroid cell. Acta Anat (Basel). 1958;33(1–2):76–104.

    CAS  Google Scholar 

  16. Idelman S. Contribution à l’histologie des macrothyréocytes chez les grand mammifères domestiques. C. R. Assoc Anat. 1963;18:781–90.

    Google Scholar 

  17. Sandritter W, Klein KH. Argyrophil cells in thyroid gland. Frankf Z Pathol. 1954;65(2):204–18.

    CAS  PubMed  Google Scholar 

  18. Godwin MC. Am J Anat. 1937;60:299.

    Article  Google Scholar 

  19. Ponse K. Thyroid histophysiology. Ann Endocrinol (Paris). 1951;12(3):266–316.

    CAS  Google Scholar 

  20. Pearse AGE. The cytochemistry of the thyroid C cells and their relationship to calcitonin. Proc R Soc Lond. 1966;164:478–87.

    Article  CAS  PubMed  Google Scholar 

  21. Grimelius L. The argyrophil reaction in islet cells of adult human pancreas studies with a new silver nitrate procedure. Acta Soc Med Ups. 1968;73(5–6):271–94.

    CAS  PubMed  Google Scholar 

  22. Tashjian AH Jr, Wolfe HJ, Voelkel EF. Human calcitonin. Immunologic assay, cytologic localization and studies on medullary thyroid carcinoma. Am J Med. 1974;56(6):840–9.

    Google Scholar 

  23. Wolfe HJ, et al. Distribution of calcitonin-containing cells in the normal neonatal human thyroid gland: a correlation of morphology with peptide content. J Clin Endocrinol Metab. 1975;41(06):1076–81.

    Article  CAS  PubMed  Google Scholar 

  24. Wolfe HJ, Voelkel EF, Tashjian AH Jr. Distribution of calcitonin-containing cells in the normal adult human thyroid gland: a correlation of morphology with peptide content. J Clin Endocrinol Metab. 1974;38(4):688–94.

    Article  CAS  PubMed  Google Scholar 

  25. Copp DH, et al. Evidence for calcitonin-a new hormone from the parathyroid that lowers blood calcium. Endocrinology. 1962;70:638–49.

    Article  CAS  PubMed  Google Scholar 

  26. Bussolati G, Pearse AGE. Immunofluorescent localization of calcitonin in the “C” cells of pig and dog thyroid. J Endocrinol. 1967;37:205–9.

    Article  CAS  PubMed  Google Scholar 

  27. Pearse AGE. Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R Soc Lond. 1968;170:71–80.

    Article  CAS  PubMed  Google Scholar 

  28. Le Douarin N, Fontaine J, Le Lievre C. New studies on the neural crest origin of the avian ultimobranchial glandular cells—interspecific combinations and cytochemical characterization of C cells based on the uptake of biogenic amine precursors. Histochemistry. 1974;38(4):297–305.

    Article  PubMed  Google Scholar 

  29. Johansson E, et al. Revising the embryonic origin of thyroid C cells in mice and humans. Development. 2015;142(20):3519–28.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Englund NE, et al. Human thyroid C cells: occurrence and amine formation studied by perfusion of surgically removed goitrous glands. J Clin Endocrinol Metab. 1972;35(1):90–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ljungberg O. On medullary carcinoma of the thyroid. Acta Pathol Microbiol Scand Suppl. 1972;231:1–57.

    CAS  PubMed  Google Scholar 

  32. Horn RC Jr. Carcinoma of the thyroid: description of a distinctive morphological variant and report of seven cases. Cancer. 1951;4:697–707.

    Article  Google Scholar 

  33. Brandenburg W. Metastasizing amyloid goiter. Zentralbl Allg Pathol. 1954;91(9–11):422–8.

    CAS  PubMed  Google Scholar 

  34. Laskowski J. Carcinoma hyalinicum thyroideae. Nowotwory. 1957;7:23–8.

    Google Scholar 

  35. Hazard JB, Hawk WA, Crile G Jr. Medullary (solid) carcinoma of the thyroid-a clinicopathologic entity. J Clin Endocrinol Metab. 1959;19:152–61.

    Article  CAS  PubMed  Google Scholar 

  36. Williams ED. Histogenesis of medullary carcinoma of the thyroid. J Clin Pathol. 1966;19:114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyer JS. Fine structure of two amyloid-forming medullary carcinomas of thyroid. Cancer. 1968;21(3):406–25.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer JS, Abdel-Bari W. Granules and thyrocalcitonin-like activity in medullary carcinoma of the thyroid gland. N Engl J Med. 1968;278(10):523–9.

    Article  CAS  PubMed  Google Scholar 

  39. Cunliffe WJ, et al. A calcitonin-secreting medullary thyroid carcinoma associated with mucosal neuromas, marfanoid features, myopathy and pigmentation. Am J Med. 1970;48(1):120–6.

    Article  CAS  PubMed  Google Scholar 

  40. Melvin KE, Tashjian AH Jr. The syndrome of excessive thyrocalcitonin produced by medullary carcinoma of the thyroid. Proc Natl Acad Sci U S A. 1968;59(4):1216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bussolati G, et al. Immunofluorescent localisation of calcitonin in medullary C-cell thyroid carcinoma, using antibody to the pure porcine hormone. Virchows Arch B Cell Pathol. 1969;2(3):234–8.

    CAS  PubMed  Google Scholar 

  42. Bussolati G, Pearse AG. Immunofluorescent localization of calcitonin in the ‘C’ cells of pig and dog thyroid. J Endocrinol. 1967;37(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  43. Albores-Saavedra J, et al. The amyloid in solid carcinoma of the thyroid gland. Staining characteristics, tissue culture, and electron microscopic observations. Lab Invest. 1964;13:77–93.

    CAS  PubMed  Google Scholar 

  44. Arnal-Monreal FM, et al. Immunohistologic study of thyroidal medullary carcinoma and pancreatic insulinoma. Cancer. 1977;40(3):1060–70.

    Article  CAS  PubMed  Google Scholar 

  45. Sletten K, Westermark P, Natvig JB. Characterization of amyloid fibril proteins from medullary carcinoma of the thyroid. J Exp Med. 1976;143:993–8.

    Article  CAS  PubMed  Google Scholar 

  46. Khurana R, et al. Unraveling the amyloid associated with human medullary thyroid carcinoma. Endocrinology. 2004;145(12):5465–70.

    Article  CAS  PubMed  Google Scholar 

  47. Erickson LA, et al. Analysis of amyloid in medullary thyroid carcinoma by mass spectrometry-based proteomic analysis. Endocr Pathol. 2015;26(4):291–5.

    Article  CAS  PubMed  Google Scholar 

  48. Hirsch PF, Voelkel EF, Munson PL. Thyrocalcitonin: hypocalcemic hypophosphatemic principle of the thyroid gland. Science. 1964;146:412–3.

    Article  CAS  PubMed  Google Scholar 

  49. Williams ED, Karim SM, Sandler M. Prostaglandin secretion by medullary carcinoma of the thyroid. A possible cause of the associated idarrhoea. Lancet. 1968;1(7532):22–3.

    Article  CAS  PubMed  Google Scholar 

  50. Melvin KE, et al. Cushing’s syndrome caused by ACTH- and calcitonin-secreting medullary carcinoma of the thyroid. Metabolism. 1970;19(10):831–8.

    Article  CAS  PubMed  Google Scholar 

  51. Lairmore TC, Wells SA Jr. Medullary carcinoma of the thyroid: current diagnosis and management. Semin Surg Oncol. 1991;7(2):92–9.

    Article  CAS  PubMed  Google Scholar 

  52. Baylin SB, et al. Histaminase activity: a biochemical marker for medullary carcinoma of the thyroid. Am J Med. 1972;53(6):723–33.

    Article  CAS  PubMed  Google Scholar 

  53. Baylin SB, et al. Elevated histaminase activity in medullary carcinoma of the thyroid gland. N Engl J Med. 1970;283:1239–44.

    Article  CAS  PubMed  Google Scholar 

  54. Ishikawa N, Hamada S. Association of medullary carcinoma of the thyroid with carcinoembryonic antigen. Br J Cancer. 1976;34:111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wells SA Jr, et al. The detection of elevated plasma levels of carcinoembryonic antigen in patients with suspected or established medullary thyroid carcinoma. Cancer. 1978;42:1498–503.

    Article  CAS  PubMed  Google Scholar 

  56. Tashjian AH Jr, Melvin EW. Medullary carcinoma of the thyroid gland. Studies of thyrocalcitonin in plasma and tumor extracts. N Engl J Med. 1968;279(6):279–83.

    Article  PubMed  Google Scholar 

  57. Melvin KEW, Miller HH, Tashjian AH Jr. Early diagnosis of medullary carcinoma of the thyroid gland by means of calcitonin assay. N Engl J Med. 1971;285:1115–20.

    Article  CAS  PubMed  Google Scholar 

  58. Tashjian AH Jr, et al. Immunoassay of human calcitonin: Clinical measurement, relation to serum calcium and studies in patients with medullary carcinoma. N Engl J Med. 1970;283:890–5.

    Article  CAS  Google Scholar 

  59. Cooper CW, et al. Thyrocalcitonin: stimulation of secretion by pentagastrin. Science. 1971;172:1238–40.

    Article  CAS  PubMed  Google Scholar 

  60. Hennessy JF, et al. Stimulation of thyrocalcitonin secretion by pentagastrin and calcium in 2 patients with medullary carcinoma of the thyroid. J Clin Endocrinol Metab. 1973;36(1):200–3.

    Article  CAS  PubMed  Google Scholar 

  61. Hennessy JF, et al. A comparison of pentagastrin injection and calcium infusion as provocative agents for the detection of medullary carcinoma of the thyroid. J Clin Endocrinol Metab. 1974;39:487–95.

    Article  CAS  PubMed  Google Scholar 

  62. Wells SA Jr, et al. The early diagnosis of medullary carcinoma of the thyroid gland in patients with multiple endocrine neoplasia type II. Ann Surg. 1975;182(4):362–70.

    Article  PubMed  PubMed Central  Google Scholar 

  63. DeCourcy JL, DeCourcy CB. Pheochromocytomas and the general practitioner. Cincinnati: Barcley Newman Publishing Co; 1952.

    Google Scholar 

  64. Sipple JH. The association of pheochromocytoma with carcinoma of the thyroid gland. Am J Med. 1961;31:163–6.

    Article  Google Scholar 

  65. Sugg SL, John H. Sipple: 1930. In Pasieka JL, Lee JA, editors. Surgical endocrinopathies. Switzerland: Springer International Publishing; 2015. p. 397–400.

    Google Scholar 

  66. Cushman P Jr. Familial endocrine tumors; report of two unrelated kindred affected with pheochromocytomas, one also with multiple thyroid carcinomas. Am J Med. 1962;32:352–60.

    Article  PubMed  Google Scholar 

  67. Schimke RN, Hartmann WH. Familial amyloid-producing medullary thyroid carcinoma and pheochromocytoma. A distinct genetic entity. Ann Intern Med. 1965;63(6):1027–39.

    Article  CAS  PubMed  Google Scholar 

  68. Williams ED. A review of 17 cases of carcinoma of the thyroid and phaeochromocytoma. J Clin Pathol. 1965;18:288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Steiner AL, Goodman AD, Powers SR. Study of a kindred with pheochromocytoma, medullary thyroid carcinoma, hyperparathyroidism and Cushing’s disease: multiple endocrine neoplasia type 2. Medicine. 1968;47:371–409.

    Article  CAS  PubMed  Google Scholar 

  70. Gorlin RJ et al. Multiple mucosal neuromas, pheochromocytoma and medullary carcinoma of the thyroid—a syndrome. Cancer. 1968;22(2):293–9 (passim).

    Google Scholar 

  71. Schimke RN, et al. Syndrome of bilateral pheochromocytoma, medullary thyroid carcinoma and multiple neuromas. N Engl J Med. 1968;279:1–7.

    Article  CAS  PubMed  Google Scholar 

  72. Chong GC, et al. Medullary carcinoma of the thyroid gland. Cancer. 1975;35:695–704.

    Article  CAS  PubMed  Google Scholar 

  73. Collins FS. Positional cloning: let’s not call it reverse anymore. Nat Genet. 1992;1:3–6.

    Article  CAS  PubMed  Google Scholar 

  74. Collins FS, et al. Construction of a general human chromosome jumping library, with application to cystic fibrosis. Science. 1987;235(4792):1046–9.

    Article  CAS  PubMed  Google Scholar 

  75. Collins FS, Weissman SM. Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci USA. 1984;81(21):6812–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Royer-Pokora B, et al. Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location. Nature. 1986;322(6074):32–8.

    Article  CAS  PubMed  Google Scholar 

  77. Koenig M, et al. Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987;50(3):509–17.

    Article  CAS  PubMed  Google Scholar 

  78. Kerem B-S, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245:1073–80.

    Article  CAS  PubMed  Google Scholar 

  79. Riordan JR, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066–73.

    Article  CAS  PubMed  Google Scholar 

  80. Fung YK, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science. 1987;236(4809):1657–61.

    Article  CAS  PubMed  Google Scholar 

  81. Wallace MR, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science. 1990;249:181–6.

    Article  CAS  PubMed  Google Scholar 

  82. Miyoshi Y, et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci USA. 1992;89(10):4452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nishisho I, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253(5020):665–9.

    Article  CAS  PubMed  Google Scholar 

  84. Miki Y, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.

    Article  CAS  PubMed  Google Scholar 

  85. Wooster R, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92.

    Article  CAS  PubMed  Google Scholar 

  86. Mathew CGP, et al. A linked genetic marker for multiple endocrine neoplasia type 2A on chromosome 10. Nature. 1987;328:527–8.

    Article  CAS  PubMed  Google Scholar 

  87. Simpson NE, et al. Assignment of multiple endocrine neoplasia type 2A to chromosome 10 by genetic linkage. Nature. 1987;328:528–30.

    Article  CAS  PubMed  Google Scholar 

  88. Lairmore TC, et al. Familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2B map to the same region of chromosome 10 as multiple endocrine neoplasia type 2A. Genomics. 1991;9:181–92.

    Article  CAS  PubMed  Google Scholar 

  89. Norum RA, et al. Linkage of the multiple endocrine neoplasia type 2B gene (MEN2B) to chromosome 10 markers linked to MEN2A. Genomics. 1990;8:313–7.

    Article  CAS  PubMed  Google Scholar 

  90. Brooks-Wilson AR, et al. Genomic and yeast artificial chromosome long-range physical maps linking six loci in 10q11.2 and spanning the multiple endocrine neoplasia type 2A (MEN2A) region. Genomics. 1993;17:611–7.

    Article  CAS  PubMed  Google Scholar 

  91. Lairmore TC et al. A 1.5-megabase yeast artificial chromosome contig from human chromosome 10q11.2 connecting three genetic loci (RET, D10S94 and D10S102) closely linked to the MEN2A locus. Proc Nat Acad Sci USA. 1993;90:492–6.

    Google Scholar 

  92. Miller DL, et al. Isolation and high-resolution mapping of new DNA markers from the pericentromeric region of chromosome 10. Genomics. 1992;13:601–6.

    Article  CAS  PubMed  Google Scholar 

  93. Donis-Keller H, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet. 1993;2:851–6.

    Article  CAS  PubMed  Google Scholar 

  94. Mulligan LM, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458–60.

    Article  CAS  PubMed  Google Scholar 

  95. Carlson KM et al. Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B. Proc Nat Acad Sci USA. 1994;91:1579–83.

    Google Scholar 

  96. Hofstra RMW, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–6.

    Article  CAS  PubMed  Google Scholar 

  97. Skinner MA, et al. Prophylactic thyroidectomy in multiple endocrine neoplasia type 2A. N Engl J Med. 2005;353(11):1105–13.

    Article  CAS  PubMed  Google Scholar 

  98. Lairmore TC, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Disease State Clinical Review: Timing of Multiple Endocrine Neoplasia Thyroidectomy and Extent of Central Neck Lymphadenectomy. Endocr Pract. 2015;21(7):839–47.

    Article  PubMed  Google Scholar 

  99. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, editors. SEER cancer statistics review, 1975–2012. Bethesda, MD: National Cancer Institute. http://seer.cancer.gov/csr/1975_2012/. Based on November 2014 SEER data submission, posted to the SEER web site, April 2015.

  100. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  101. Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol). 2010;22(6):395–404.

    Article  CAS  Google Scholar 

  102. Raue F, Frank-Raue K. Epidemiology and clinical presentation of medullary thyroid carcinoma. Recent Results Cancer Res. 2015;204:61–90.

    Article  PubMed  Google Scholar 

  103. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.

    Article  CAS  PubMed  Google Scholar 

  104. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–22.

    Article  PubMed  Google Scholar 

  105. Enewold L, et al. Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005. Cancer Epidemiol Biomarkers Prev. 2009;18(3):784–91.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Netea-Maier RT, et al. Trends in incidence and mortality of thyroid carcinoma in The Netherlands between 1989 and 2003: correlation with thyroid fine-needle aspiration cytology and thyroid surgery. Int J Cancer. 2008;123(7):1681–4.

    Article  CAS  PubMed  Google Scholar 

  107. Wells SA Jr, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Magreni A, et al. The effects of race and ethnicity on thyroid cancer incidence. JAMA Otolaryngol Head Neck Surg. 2015;141(4):319–23.

    Article  PubMed  Google Scholar 

  109. Hadoux J, et al. Management of advanced medullary thyroid cancer. Lancet Diab Endocrinol. 2016;4(1):64–71.

    Article  CAS  Google Scholar 

  110. Ahmed SR, Ball DW. Clinical review: incidentally discovered medullary thyroid cancer: diagnostic strategies and treatment. J Clin Endocrinol Metab. 2011;96(5):1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Aschebrook-Kilfoy B, et al. Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006. Thyroid. 2011;21(2):125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kebebew E, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88(5):1139–48.

    Article  CAS  PubMed  Google Scholar 

  113. Pacini F, et al. Medullary thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22(6):475–85.

    Article  CAS  Google Scholar 

  114. Cabanillas ME, et al. Thyroid gland malignancies. Hematol Oncol Clin North Am. 2015;29(6):1123–43.

    Article  PubMed  Google Scholar 

  115. Raue F. German medullary thyroid carcinoma/multiple endocrine neoplasia registry. German MTC/MEN study group. Medullary thyroid carcinoma/multiple endocrine neoplasia type 2. Langenbecks Arch Surg. 1998;383(5):334–6.

    Article  CAS  PubMed  Google Scholar 

  116. Roy M, Chen H, Sippel RS. Current understanding and management of medullary thyroid cancer. Oncologist. 2013;18(10):1093–100.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Marsh DJ, et al. Germline and somatic mutations in an oncogene: RET mutations in inherited medullary thyroid carcinoma. Cancer Res. 1996;56(6):1241–3.

    CAS  PubMed  Google Scholar 

  118. Raue F, Frank-Raue K. Update multiple endocrine neoplasia type 2. Fam Cancer. 2010;9(3):449–57.

    Article  CAS  PubMed  Google Scholar 

  119. Wells SA Jr, et al. Multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma: an update. J Clin Endocrinol Metab. 2013;98(8):3149–64.

    Article  CAS  PubMed  Google Scholar 

  120. Farndon JR, et al. Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg. 1986;73:278–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry C. Lairmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mrdutt, M.M., Lairmore, T.C. (2016). History and Epidemiology. In: Wang, T., Evans, D. (eds) Medullary Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-39412-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39412-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39410-7

  • Online ISBN: 978-3-319-39412-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics