Skip to main content

The Biology of Adipose Tissue

  • Chapter
  • First Online:
Obesity
  • 2149 Accesses

Abstract

Fat (white adipose tissue) stores energy and produces multiple chemical signals that communicate a state of health throughout the body. At a point in the development of obesity fat becomes sick, causing adipose tissue to dysfunction. Adipose tissue dysfunction is the key tipping point in metabolic disease. Adipose tissue dysfunction is the final common pathway of inflammation and it induces insulin resistance locally (adipose) and distally (muscle, liver). A simple increase in storage of fat is not sufficient to cause metabolic disease. Inflammation is the triggering event that causes adipose tissue to become sick and dysfunctional, leading to metabolic disease. This chapter will discuss the components of adipose tissue and the characteristics of different fat cells, discuss the role of hypoxia on inflammation, and define the key metabolic steps that lead to adipose tissue dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson JR. Harvard University. http://projects.iq.harvard.edu/stigmainshakespeare/falstaff’s-obesity.

  2. Trayhurn P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu Rev Nutr. 2014;34:207–36.

    Article  CAS  PubMed  Google Scholar 

  3. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl. 2012;6:91–101.

    Article  CAS  PubMed  Google Scholar 

  4. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2:313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR. Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci. 2006;103:6676–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macotela Y, Emmanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng Y-H. Kahn Cr. intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes. 2012;61:1691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophy Acta. 2014;1842(3):358–69.

    Article  CAS  Google Scholar 

  8. Langin D. Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity? Biochim Biophys Acta. 2010;1801:372–6.

    Article  CAS  PubMed  Google Scholar 

  9. Dempersmier J, Sul HS. Shades of Brown: a model for thermogenic fat. Front Endocrinol (Lausanne). 2015;8(6):71–80.

    Google Scholar 

  10. Bluher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab. 2013;27:163–77.

    Article  PubMed  Google Scholar 

  11. Rosell M, Kaforou M, Frontini A, Okolo A, Chan YW, Nikolopoulou E, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306(8):E945–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 2014;63(10):3253–65.

    Article  CAS  PubMed  Google Scholar 

  13. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67.

    Article  CAS  PubMed  Google Scholar 

  14. Blaak EE, Van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH. Beta-adrenergic stimulation and abdominal subcutaneous fat blood flow in lean, obese and reduced-obese subjects. Metabolism. 1995;44:184–7.

    Google Scholar 

  15. Heinonen I, Kemppainen J, Kaskinoror K, Knuuti J, Boushel R, Kalliokoski KK. Capacity and hypoxic response of subcutaneous adipose tissue blood flow in humans. Circ J. 2014;78:1501–6.

    Article  PubMed  Google Scholar 

  16. Acheson KJ. Influence of autonomic nervous system on nutrient-induced thermogenesis in humans. Nutrition. 1993;9(4):373–80.

    CAS  PubMed  Google Scholar 

  17. Yoshikawa T, Naito Y. What is oxidative stress? JMAJ. 2002;45(7):271–6.

    Google Scholar 

  18. Sell HH, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol. 2012;8:709–12.

    Article  CAS  PubMed  Google Scholar 

  19. Lin Q, Yun Z. the hypoxia-inducible factor pathway in adipocytes: the role of HIF-2 in adipose inflammation and hypertrophic cardiomyopathy. Front Endoc. 2015;6(39):1–7.

    Google Scholar 

  20. Palmer BF, Clegg DJ. Oxygen sensing and metabolic homeostasis. Mol Cell Endocrinol. 2014;397(1–2):51–8.

    Article  CAS  PubMed  Google Scholar 

  21. Netzer N, Gatterer H, Faulhaber M, Burtscher M, Pramsohler S, Pesta D. Hypoxia. Oxid Stress Fat Biomol. 2015;5:1143–50.

    CAS  Google Scholar 

  22. Goosens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization and inflammation. Circulation. 2011;124:67–76.

    Article  Google Scholar 

  23. Goosens GH, Blaak EE. Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol. 2015;6:1–5.

    Google Scholar 

  24. Lecoultre V, Peterson CM, Covington JD, Ebenezer PJ, Frost EA, Schwarz JM, Ravussin E. Ten nights of moderate hypoxia improves insulin sensitivity in obese humans. Diabetes Care. 2013;36:e197–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new insights into breast cancer development and progression. Am Soc Clin Oncol Educ Book. 2013;46–51.

    Google Scholar 

  26. Mazzatti D, Lim F-L, O’Hara A, Wood IS, Trayhurn P. A microarray analysis of the hypoxia-induced modulation of gene expression in human adipocytes. Arch Physiol Biochem. 2012;118:112–20.

    Article  CAS  PubMed  Google Scholar 

  27. Bluher M. Clinical relevance of Adipokines. Diabetes Metab J. 2012;36:317–27.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Gaal LF, Mertens IL, DeBlock CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–80.

    Article  PubMed  Google Scholar 

  29. Bluher M. Adipokines-removing roadblocks to obesity and diabetes therapy. Mol Metab. 2014;3:230–40.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;26:1407–33.

    Article  CAS  PubMed  Google Scholar 

  31. Scheer FA, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci. 2009;106(11):4453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97:1344–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301:E567–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chan JL, Heist K, DePaoli AM, Veldhuis JD, Mantzoros CS. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J Clin Invest. 2003;111:1409–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, et al. Low-dose leptin reverses skeletal muscle, autonomic and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005;115:3579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–75.

    Article  CAS  PubMed  Google Scholar 

  37. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin Regulates striatal regions and human eating behavior. Science. 2007;317(5843):1355.

    Article  CAS  PubMed  Google Scholar 

  38. Banks WA. Leptin Transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des. 2001;7:124–33.

    Google Scholar 

  39. Banks WA, Clever CM, Farrell CL. Partial saturation and regional variation in the blood—to-brain transport of leptin in normal-weight mice. Am J Physiol Endocrinol Metab. 2000;278:E1158–65.

    CAS  PubMed  Google Scholar 

  40. Brennan AM, Mantzoros CS. Drug Insight: the role of Leptin in human physiology and pathophysiology-emerging clinical applications. Nat Clin Pract Endocrinol Metab. 2006;2:318–27.

    Article  CAS  PubMed  Google Scholar 

  41. Moon HS, Chamberland JP, Diakopoulos KN, Fiorenza CG, Ziemke F, Schneider B, Mantzoros CS. Leptin and amylin act in an additive manner to activate overlapping signaling pathways in peripheral tissues: in vitro and ex-vivo studies in humans. Diabetes Care. 2011;34:132–8.

    Article  CAS  PubMed  Google Scholar 

  42. Moon HS, Matarese G, Brennan AM, Chamberland JP, Liu X, Fiorenza CG, et al. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. Diabetes. 2011;60:1647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55:2319–26.

    Article  CAS  PubMed  Google Scholar 

  44. Sook LE, Park SS, Kim E, Sook YY, Ahn HY, Park CY, et al. Association between adiponectin levels and coronary heart disease and mortality: a systematic review and metaanalysis. Int J Epidemiol. 2013;42:1029–39.

    Article  Google Scholar 

  45. Arai Y, Nakazawa S, Kojima T, Takayama M, Ebihara Y, Shimizu K, et al. High adiponectin concentration and its role for longevity in female centenarians. J Gerontol A Biol Sci Med Sci. 2006;6:32–9.

    Google Scholar 

  46. Kadowaki T, Yamauchi T, Okada-Iwabu M, Iwabu M. Adiponectin and its receptors: implications for obesity-associated disease and longevity. Lancet Diabetes Endocrinol. 2013;2:8–9.

    Article  PubMed  Google Scholar 

  47. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin resistance. Front Endo. 2013;4(71):1–13.

    Google Scholar 

  48. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548–56.

    Article  CAS  PubMed  Google Scholar 

  49. Bluher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism. 2015;64:131–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin P. Blackstone .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blackstone, R.P. (2016). The Biology of Adipose Tissue. In: Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-39409-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39409-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39407-7

  • Online ISBN: 978-3-319-39409-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics